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A B S T R A C T   

Many processes in geology and geotechnical engineering fields involve multi-field coupling, fluid–solid coupling 
and large deformation. The numerical simulation of such complicated processes is still very challenging. Based 
on the Discrete Element Method, a pore density flow model is proposed to simulate multi-field coupling and 
fluid–solid coupling, which introduces the Pore Network Model to describe the pores. The fluid properties within 
a single pore are normalized to reduce the computational complexity and determine the amount of fluid ex-
change based on the Darcy’s Law. Moreover, an equation including density, pressure and temperature is 
introduced to simulate fluid state. The pore network changes dynamically with the displacement of elements, 
which can simulate the cracking and failure process of complex rock and soil mass driven by fluids. This model is 
implemented in the high-performance discrete element software MatDEM, which can quantitatively analyze the 
evolution law of fluid–solid coupling in the pore scale. Three examples are given to verify the validity of this 
model. The simulation results show that this model can not only form an effective network model based on the 
DEM, but also can reflect the immigration of fluids and heat in the porous medium and the development trend of 
fluid-driven fractures.   

1. Introduction 

A large number of geotechnical engineering problems involve flu-
id–solid coupling, multi-field coupling and large deformation, such as 
rainfall-induced landslides, water and mud inrush in tunnels, and 
freeze–thaw cycles of frozen soil (Long et al., 2022; Liu et al., 2020; Zhou 
et al., 2021b). However, numerical simulation and analysis of complex 
engineering geological problems that involve multi-field coupling and 
large deformation are still very challenging. On the macroscopic scale, 
the rock and soil mass can be considered as a continuous medium, and 
problems such as seepage and multi-field coupling can be simulated by 
methods such as finite element and finite difference (Huang and Jia, 
2009; Qu et al., 2020). However, on the microscopic scale, the rock and 
soil mass are composed of solids, pores and fluids in the pores, which 
constitutes the problem of fluid–solid coupling (Kuhn and Daouadji, 
2020). Regular continuum mechanics methods, such as the Finite 
Element Method, has been widely applied in the analysis of multi-field 
coupling processes. However, they still have difficulties in numerical 
simulations of large deformations and failures of medium. In the 
Discrete Element Method (DEM) (Cundall and Strack, 1979), rock and 
soil blocks are represented by a series of cemented elements. Large 

deformation failure processes, such as the evolution of landslides (Lu 
et al., 2014) and the liquefaction of sands (Sizkow and El Shamy, 2022), 
can be well simulated in this method. 

The fluid–solid coupling method based on DEM is the focus of current 
research. At present, the common methods for coupled calculation with 
DEM are Computational Fluid Dynamics (CFD) (Zhou et al., 2019; 
Norouzi et al., 2016), Smoothed Particle Hydrodynamics (SPH) (Sizkow 
and El Shamy, 2021; Xu et al., 2020) and Lattice Boltzmann Method 
(LBM) (Han and Cundall, 2013; Huang et al.2021). Both DEM-CFD and 
DEM-SPH are solved by the Navier–Stokes (N-S) equation. DEM-CFD 
usually adopts the incomplete solution method. In this method, the 
computing grid size of fluid is larger than the diameter of solid elements, 
which is suitable for large-scale macroscopic 3D fluid–solid coupling 
numerical simulation (Zhou et al., 2019), such as landslide surge 
simulation (Nian et al., 2021). DEM-SPH describes continuous fluids (or 
solids) as groups of interacting elements. This method has advantages in 
the fluid–solid coupling simulation of fluids with free surfaces. In this 
method, the resolution of the fluid needs to be at least twice that of the 
solid element size, which lacks stability and accuracy. Both DEM-CFD 
and DEM-SPH have difficulties in numerical simulation in the pore 
scale (Zheng et al., 2010). A lattice Boltzmann formulation of the 
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generalized Navier-Stokes equations is used to describe the fluid motion 
in the DEM-LBM. In this method, discrete element elements are regarded 
as a moving object in the fluid, and their shape and size are described by 
the LBM lattice (Rettinger and Rüde, 2018). The mesh size of this 
method is one order of magnitude smaller than that of solid elements, so 
this method can better simulate the coupling between elements and the 
surrounding fluid. At present, this method has been applied in the 
liquefaction of sands (Indraratna et al., 2021), porous media fluids 
(Zhou et al., 2021a) and other problems. The DEM-LBM can accurately 
simulate complex multi-field, multiphase and multiscale problems. 
However, this method requires a large amount of calculation. In the 
three-dimensional case, the simulation scale of the DEM-LBM is usually 
limited to hundreds of elements (Han and Cundall, 2013), which limits 
its application at the engineering scale. 

In recent years, the French open source software Yade team began to 
develop numerical simulations of fluid–solid coupling based on the Pore 
Network Model (PNM) (Catalano et al., 2013) to meet the needs of large- 
scale fluid–solid coupling. The intermediate scale introduced by the 
PNM discretizes the pore space into a set of fluid domains and pore 
throats. This method does not need to solve the N-S equations, which 
effectively improves the calculation efficiency. At present, DEM-PNM 
has been applied in many fields, such as fluid flows between particles 
(Wautier et al., 2017), granular material drying (Kharaghani et al., 
2011) and drainage in granular materials (Yuan et al., 2016). However, 
in this model, the fluid state equation is generally solved by the bulk 
modulus, which cannot effectively consider the effect of temperature 
and density on the fluid state. Moreover, the redivision of network 
caused by the displacement of solid elements also has some shortcom-
ings, so it is usually limited to static or quasi-static problems such as 
seepage. 

This paper constructs a pore density flow model that includes the 
seepage model, the hydrothermal coupling model and the fluid–solid 
coupling model for overcoming the shortcomings of the above model. In 
this model, a fluid state equation containing temperature, density and 
pressure is introduced to consider the effect of temperature on seepage 
calculations, which can be used to ensure the correctness of the pore 
seepage calculation under non-isothermal action. In addition, the dy-
namic identification of the pore network structure and state is achieved 
during the deformation and failure of solids that considers the process of 
merging and splitting of pores and fractures for solving the problem of 
fluid-driven failure in porous media. 

This paper is organized as follows. First, a pore seepage model is 
presented, which considers the structure of pores based on the discrete 
element packing model. The equations of fluid state and thermal ex-
change are applied to establish a hydrothermal coupling model based on 
the seepage model. Then the dynamic division of the pore network is 
applied to the fluid–solid coupling model. Finally, the pore density flow 
model is thoroughly verified through three numerical examples. A 
geothermal model tank experiment and a hydraulic fracturing experi-
ment are simulated using the hydrothermal coupling model and fluid-
–solid coupling model to study the laws of geothermal transmission and 
the developmental trends in fracture driven by fluid. 

2. The basic principle of DEM 

In the DEM, rock and soil mass are modeled by stacking elements 
with specific mechanical properties. The macroscopic mechanical 
properties of the model are affected by the properties of the elements, 
the packing process, and the cementation. In the linear elastic model, it 
is assumed that the elements rely on springs to contact each other and 
generate force (Jiang et al., 2012; Liu et al., 2013; Liu et al., 2015). The 
normal force and normal deformation between elements can be simu-
lated by normal springs between elements (Place and Mora, 1999): 

Fn =

⎧
⎨

⎩

KnXn, Xn < Xb Completeconnectiona
KnXn, Xn < 0 Brokenconnectionb
0, Xn > 0 Brokenconnectionc

(1)  

where Kn is the normal stiffness of the spring, Xn is the normal relative 
displacement (Fig. 1a), and Xb is the fracture displacement. Initially, 
elements are interconnected with their adjacent elements and subjected 
to tensile or compressive spring forces (Eq. 1a and Eq. (1b)). When Xn 
between the two elements exceeds the fracture displacement (Xb), the 
spring breaks and the interelement tensile force no longer exists between 
them (Eq. (1c)); However, the compressive force may act between them 
when they return to a compressive status. 

The shear force (Fs) and shear deformation (Xs) between elements are 
simulated by tangential springs (Place and Mora, 1999): 

Fs = KsXs (2)  

where Ks is the shear stiffness and Xs is the shear relative displacement. 
The spring also has a failure criterion in the tangential direction, 

which is based on the Mohr–Coulomb criterion: 

Fsmax = Fs0 − μpFn (3)  

where Fsmax is the maximum shear force, Fs0 is the interelement initial 
shear resistance, and μp is the interelement coefficient of friction. In the 
Mohr–Coulomb criterion, the maximum shear resistance between ele-
ments is related to the initial shear resistance (Fs0). Fs0 is the maximum 
shear force allowed between elements without applying normal pres-
sure. When the magnitude of the shear force exceeds the maximum shear 
force determined by Eq. (2), the tangential connection is broken, and 
only the sliding friction force (-μpFn) exists between the elements. 

3. The pore density flow model 

Based on the DEM, the pore density flow model (PDF) introduces the 
pore network model to describe the pores among discrete elements. This 
model includes seepage models, hydrothermal coupled models, and 
fluid–solid coupled models, which can be used to simulate seepage and 
fluid-driven failure problems in saturated porous media. 

The basic idea of PDF is as follows: (1) identify pores (fluid domains) 
and pore throats in discrete element models; (2) the fluid in the pore 
migrates between the pores through the pore throat, and the seepage is 
determined by factors such as rock and soil properties, fluid pressure 
difference and external load; (3) the water pressure is determined ac-
cording to the temperature and density of the fluid in the pores; (4) the 
elements are displaced under the pressure of the fluid, which realizes the 
fluid–solid coupling. In this method, the pressure of the fluid can be 
obtained from the density and temperature. This improved method can 
further consider the effect of temperature on the fluid–solid coupling 
process during fluid migration. At the same time, we also improved the 
identification method of the pore network in the process of fluid–solid 
coupling, which can better simulate the large deformation and failure of 
rock and soil. 

Fig. 1. Schematic diagram of the linear elastic model.  
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3.1. The structure of pore network based on DEM 

The classic pore network model (PNM) is often considered in the 
Discrete Element Method (DEM) to simulate the fluid flow and fluid-
–solid coupling in the pore scale. The PNM is generally composed of 
pores and pore-throat channels with a certain transmission capacity 
between the pores (FATT, 1956). This method mainly studies the 
transfer and diffusion of fluids in a fixed network without considering 
the coupling between elements and pores. The advantage of this method 
is that the calculation speed is fast, which has been widely used in flu-
id–solid coupling problems in the pore scale. 

Essentially, LBM simulates the migration of fluids with a certain 
density between networks. The macroscopic parameters of the fluid, 
such as the fluid pressure, are related to density. Based on the theory of 
DEM-PNM and the basic idea of LBM, the pore density flow model is 
proposed in this paper to simulate fluid–solid coupling. In this model, 
rocks and soils are discretized into elements (Fig. 2a), and the voids 
between elements are defined as pores (Fig. 2b, See Fig. 3 for details). 
The pores are filled with fluids with the same physical properties. Pore 
throats are defined as channels connecting pores, which are gaps be-
tween elements in a discrete element system. In this model, pore throats 
with a certain width and length are used to control fluid transport. Pores 
and pore throats make up the pore network model (Fig. 2 c). 

As shown in Fig. 3, in case of a two-dimensional model, we abstract 
the pore throat (the dashed rectangle in Fig. 3) as a parallel plate with a 
certain thickness and length. In the three-dimensional model, it is 
abstracted as a cylinder with a certain length. When there is a pressure 
difference between two adjacent pores, the fluid will seep through the 
pore throat channel which can be calculated by Darcy’s law. In this 
paper, the flow rate (q) through the pore throat per unit time is defined 
as: 

q = kA
dP
l

(4)  

where k represents the permeability coefficient of the pore throat, which 
is inversely proportional to the length of the pore throat and propor-
tional to the width; dP is the pressure difference between adjacent pores. 
A is the area of the pore throat, which is equal to the width dw of the pore 
throat in a two-dimensional problem. The length l of the pore throat is 
defined as: 

l = min(R1,R2) (5) 

The distance between the centers of the two elements with radii R1 
and R2 is L. In the Discrete Element Method, the distance between the 
elements is used to determine whether the elements are in contact, 
which is used to determine the presence of pore throats in this model. 
When the distance L between the elements is less than the threshold 
Dmax, there is a pore throat channel between the two elements. 

Generally, to reproduce the sedimentation process of rock and soil, 
discrete elements will be packed under gravity deposition during the 
modelling process. In the DEM, the elements overlap each other under 
the action of gravity and external loads. In this case, the pore throats are 

given a certain initial width to avoid unrealistic permeability co-
efficients (k < 0). Therefore the radii of the elements needs to be reduced 
when performing pore identification. The reduced radius is called the 
hydraulic radius Rw, which is defined as the product of the radius of the 
elements composing the pore throat and the hydraulic radius coefficient 
a. Therefore, the real pore throat width dw = L − a(R1 +R2). As shown in 
Fig. 3, the orange circles represent real discrete element elements, and 
the blue circles represent elements with hydraulic radii. 

The permeability coefficient of pore throats is macroscopically 
expressed as the permeability coefficient of rock and soil. The volu-
metric flow rate of the model obeys the cubic law, and the flow rate of 
liquid through the pore throat per unit time is (Tsang and Witherspoon, 
1981): 

Q =
dw

3

12μ
dP
l

(6)  

where μ is the dynamic viscosity of the liquid. When the solid of the 
accumulation model remains unchanged, the larger the permeability 
coefficient of the pore throat is, the larger the macroscopic permeability 
coefficient of the rock–soil mass. The microscopic permeability coeffi-
cient of pore throats k = dw

2
/12μ. 

The rock exhibits different permeability coefficient values in 
different directions, which is called the anisotropy of rock permeability 
coefficient. Based on Eq. (4), the anisotropy of permeability coefficient is 
mainly achieved by changing the microscopic permeability coefficient k. 
For example, we can set the microscopic permeability coefficient k to a 
variable k (x, y, z) which changes with the spatial position, so that the 
permeability coefficient in different directions can be controlled 
artificially. 

Fig. 2. (a) The basic geotechnical solid consists of discrete elements; (b) pore throats are constructed between adjacent elements, which constitute pores; (c) the pore 
network based on Discrete Element Model. 

Fig. 3. Schematic diagram of the hydraulic radius (the orange circles represent 
real discrete element elements, and the blue dashed circles represent elements 
with hydraulic radii. The dashed rectangle between the two elements is the pore 
throat with length l and width dw). 
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3.2. Fluid state equation 

Most fluid–solid coupling simulations are only performed under 
isothermal condition, in which the bulk modulus of the fluid does not 
change. For problems such as geothermal activity, temperature is one of 
the important parameters. The bulk modulus of the fluid is greatly 
affected by temperature. The equation of state, which can be obtained 
from experimental data, can be used to quantitatively describe the fluid 
state. Therefore, in the pore density flow model, we introduce the var-
iable temperature (T) into the fluid state equation. The general fluid 
state equation can be written as: 

P = f (ρ,T) (7) 

By fitting the relationship between water density and temperature 
and pressure under saturated vapor pressure, the equation of state of 
water is obtained. The form of the equation is: 

P =
ρ − 999.9 − 0.03769T + 0.006417T2 − 1.901 × 10− 5T3

4.913 × 10− 7 − 2.313 × 10− 9T + 2.302 × 10− 11T2 (8) 

The unit of temperature T is ◦C, the unit of density ρ is kg/m3, and the 
unit of pressure P is MPa. When we simulate an isothermal process 
(taking 20 ◦C as an example), the equation simplifies to: 

P =
ρ − 999.75

4.615 × 10− 7 (9)  

3.3. Two-dimensional pore seepage model 

When there is a pressure difference between two adjacent pores, the 
fluid seeps through the pore throat channel. The algebraic sum of the 
mass difference between the output and input of the fluid flowing 
through a single pore and its internal mass change is zero. Fig. 4 shows 
the direction of fluid movement between the fluid domain Pore0 and its 
surrounding fluid domains Porei (i = 1, 2, 3…). This migration follows 
Darcy’s law, and the fluid will spontaneously migrate from high- 
pressure pores to low-pressure pores. The flow rate (Qij) through the 
pore throat in one time step is defined as: 

Qij = kij
Aij

lij
(Pi − Pj) (10)  

where kij is the permeability coefficient of the pore throat, Aij is the area 
of the pore throat, lij is the length of the pore throat. Fluid inflow is 
defined as a positive value in Eq.10. 

The new mass of the fluid domain calculated after a time step is: 

M’ = M0 +
∑n

j=1
Qijρij (11)  

where M0 is the original mass of the central fluid domain, Qij is the 
seepage flow of each fluid domain to the central fluid domain, and ρij is 
the fluid density of the outflow domain. By this method, the mass of all 
fluid domains in one time step can be calculated, and then the density of 
all fluid domains is obtained. In the two-dimensional model, the volume 
can be considered equal to the area of pores. After the new density and 
temperature (Eq. (14)) are introduced into the fluid state equation (Eq. 
(7)), a new pressure field distribution is obtained. The change in pres-
sure difference causes the next step of seepage change and then forms an 
iterative loop of solving density, temperature and pressure. The process 
of fluid flow is realized through the above directions. 

3.4. Hydrothermal coupling model 

DEM-PNM seldom considers the effect of temperature on fluid 
transport. We introduce the variable temperature T into the fluid state 
equation, which realizes the iterative calculation of temperature, den-
sity and pressure. Generally, there are three categories of thermal ex-
change: thermal convection, thermal conduction, and thermal radiation. 
Thermal exchange in saturated porous media mainly involves thermal 
convection and thermal conduction (Kačur et al., 2017). The main 
reason of thermal convection is that the migration of fluids at different 
temperatures causes the changes in the temperature of pores. Thermal 
conduction mainly occurs between adjacent fluid domains, and the 
thermal conduction is spontaneously transferred from the fluid domain 
with high temperature to the fluid domain with low temperature. 

In this model, heat is stored in the fluid and thermal convection 
occurs during fluid flow. Due to the interpore pressure gradients, fluid 
with a specified temperature flows between the pores. For a single pore 
(taking pore0 in Fig. 4 as an example), the changed temperature 
ΔTconvection of the pore due to thermal convection is: 

ΔTconvect =

∑n
i=1Qiρi(Ti − T0)

M0 +
∑n

i=1Qiρi
(12)  

where Ti and ρi are the temperature and density of the surrounding fluid 
domains.Qij is the seepage flow of each fluid domain to the central fluid 
domain. T0 and M0 are the initial temperature and mass of the sur-
rounding fluid domains. The propagation direction of thermal convec-
tion is consistent with the pressure gradient. The efficiency of thermal 
convection is related to the pressure difference between adjacent pores. 
When the pressure difference is greater, the fluid velocity is faster, and 
the speed of thermal convection is faster. 

Thermal conduction occurs between two adjacent fluid domains with 
different temperatures and is calculated according to the classical 
Fourier law. The changed temperature ΔTconduct of the pore per unit time 
due to thermal conduction is: 

ΔTconduct = −
ϕ
∑n

j=1
dTij
lij

Aij

cM0
(13)  

where c and M0 are the specific heat capacity and mass of the fluid 
domains, ϕ is the thermal conductivity, dTij/lij is the temperature 
gradient between adjacent pores, and Aij is the area of the pore throat. 
The direction of thermal conduction has nothing to do with the pressure 
gradient and is consistent with the direction of the temperature gradient. 
The efficiency of thermal conduction increases with increasing tem-
perature gradient. 

The temperature T’ of the fluid domain after heat exchange after a 
time step is: 

T ’ = T0 +ΔTconvect +ΔTconduct (14) 
Fig. 4. Fluid migration diagram.  

Y. Zhu et al.                                                                                                                                                                                                                                     



Computers and Geotechnics 154 (2023) 105118

5

where T0 is the original temperature, ΔTconvect is the temperature change 
caused by the pressure gradient, and ΔTconduct is the temperature change 
caused by the temperature gradient. Considering the effects of thermal 
convection and conduction between fluid media, the description and 
simulation of the complex hydrothermal coupling process is realized 
through the iterative calculation of the above formula. Further, the 
method can be used to study the simulation of solute transport, which 
includes the convection and diffusion phenomena. 

3.5. Fluid-solid coupling model 

In this model, there is a two-way coupling between fluids and solids. 
Elements are displaced under the action of fluid pressure difference, 
which causes changes in parameters such as pore volume, pore throat 
channel area, and local permeability coefficient. These changes can 
further affect the state and transport of the fluid. The fluid–solid 
coupling includes three steps: the action of the fluid on the solid, the 
action of the solid on the fluid, and the re-division of the pore network. 

3.5.1. The search algorithm of pore network 
The search algorithm of pore network in this paper is based on matrix 

calculation. Fig. 5a is the discrete element packing model composed of 
elements numbered 1 ~ 7. The pore network model is established based 
on the proposed pore throat identification method in section 3.1. Fig. 5b 
is the connection index matrix C based on the pore structure in Fig. 5a. 
The data in the first column is the index of connections, the second and 
third column are the serial number of starting and ending elements. Pore 
throats between elements are defined as connections and represented as 
vectors (such as (a, b), where a is the number of the starting element, and 
b is the number of the ending element). In the connection index matrix 
C, connections with different starting elements are arranged in 
ascending order of the starting element and connections with the same 
starting element are arranged in ascending order of the angle θ between 
the vector and the positive direction of the X axis (see Fig. 5b for details). 
In this algorithm, connection (b, a) is defined as the anti-connection of 
connection (a, b). Fig. 5c is the anti-connection index matrix CI based on 
the connection index matrix C, which makes the numbers in the second 
column smaller than the numbers in the third column. Therefore, con-
nections with equal row vectors in CI are anti-connections of each other 
(such as connection with index 1 and connection with index 6). 

As shown in Fig. 5a, (1, 2), (2, 3) and (3, 1) together constitute a 
pore. The connection (2, 3) is defined as the next-connection of 
connection (1, 2). The basic method to find the pore is to start from the 
initial connection and find all the next-connections that make up the 

pore along the fixed direction. From Fig. 5b, we can know that the dif-
ference between the index of the anti-connection and the index of the 
next connection is 1, so the next connections can be quickly searched 
based on C and CI. For example, we search for the pore formed by red 
arrows in Fig. 5a, whose initial connection is (1, 2). First, we know that 
the index of the anti-connection of the initial connection is 1 based on CI. 
Then, the index of the next-connection can be obtained by subtracting 1 
from the index of the anti-connection. Repeating this, we will eventually 
go back to the initial connection and get the indexes of all the connec-
tions that make up the pore: 1, 5, 9. Based on this method, we perform 
pore search on all connections and delete pores with the same compo-
sition, and finally the composition of all pores is obtained. We call this 
method simplex closed-loop search. The simplex closed-loop search will 
be performed in each time step, which effectively improves the 
computational efficiency compared with the traditional method. 

3.5.2. The effect of solids on fluids 
As shown in Fig. 6, for a discrete unit B0, there are 4 pores P1 ~ P4 

around it. The resultant force of the fluid on the element (Ff ) can be 
obtained by calculating the pressure of the surrounding pores. In con-
ventional discrete element calculations Ff is incorporated into the 
element force calculation, which can obtain the velocity v and 
displacement × of elements. After elements moved, the new volume of 
each pore needs to be recalculated. For example, when the fluid pressure 
in the pore P1 ~ P3 is high, the resultant force of the fluid on the element 
B0 pushes the element B0 to the lower left (see Fig. 6a). The effect of fluid 
on solid is realized based on this method. 

3.5.3. The effect of solids on fluids 
The effect of solids on pore seepage is reflected in the displacement of 

particles caused by stress which further influences the pressure and 
migration of fluids. The effect of the fluids on the solids can be obtained 
by the weighted summation of the fluid pressure and the action area 
vector: 

Ff
̅→

=
∑

Pi Si
→ (15) 

During fluid seepage, changes in the pore network caused by particle 
displacement can further change the density and pressure of the fluid. 
This effect of solids on seepage can be represented by the equation of 
state of the fluid.The variation of stress can also cause the displacement 
of discrete elements, which changes the size of the pore throats and thus 
changes the permeability. For example, in Fig. 6b, when element B0 is 
moved slightly to the lower left corner, the volume of the P4 pores 

Fig. 5. (a)The pores in the figure are composed of elements numbered 1 ~ 7, and different elements constitute different connections; (b) The connection index matrix 
C; (c) The anti-connection index matrix CI. 
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decreases, which causes an increase in the density and pressure of the 
fluid. Correspondingly, the pressure of the fluid in pore P1 ~ P3 de-
creases. The effect of solid on fluid is realized based on this method. 

3.5.4. Re-division of the pore network 
Through simplex closed-loop search, the pore network will be re- 

divided before each iteration. As shown in Fig. 6a, the fluid pressure 
changes with seepage, which causes the displacement of the central 
element to displace. The displacement of the central element destroys 
the steady state of the pore network. As shown in Fig. 6b, after the 
central element is displaced, the pore network needs to be divided due to 
the change in the distance between the elements. The original pore 
network is divided and merged due to the disappearance of some old 
pore throats and the emergence of new pore throats. When a pore is 
divided, the density and pressure of these sub pores remain unchanged, 
and their mass is calculated according to the pore volume. When some 
pores are merged, the density of the new pore ρ’ is the weighted sum of 
the density of the original pores. The dynamic division of the network is 
realized based on this method. Pore P4 in Fig. 6a is divided into pores P2′

and P3′ in Fig. 6b, and pore P1 ~ P3 is merged into pore P1′. 

4. Verification Examples 

4.1. Development Platform and Calculation process 

The pore density flow model proposed in this paper is developed 
based on the high-performance DEM software MatDEM, which can be 
downloaded from https://matdem.com. Based on the innovative matrix 
discrete element computing method, it implements an efficient discrete 
element numerical simulation of millions of elements. At present, 
MATDEM has been widely used in geological engineering fields such as 
landslides, tunnel excavation, seismic signal inversion and geotechnical 
testing (Chen and Song, 2021; Xue et al., 2021; Luo et al., 2021). 

Based on the theoretical model in Section 3, after establishing the 
model, the properties of the fluid domain (pressure, temperature) are 
first set, and then the initial fluid domain properties—volume, density, 
and mass—are systematically calculated. Driven by the internal pressure 
difference, fluids begin to migrate in the pore network. The density, 
temperature and pressure of each fluid domain after the first time step 
are calculated by equations. Then the pore network will be updated 
according to the displacement of elements. The density, temperature 
and pressure calculated after the first-time step will become the initial 
properties of the second time step. Iterating in this way can realize the 
numerical simulation of fluid–solid coupling. The specific process is 
shown in the flow chart below (Fig. 7). 

Next, in this section, the discrete element model is established ac-
cording to the developed code. The validation and convergence of the 

pore density flow model will be verified through a testing seepage 
experiment, a geothermal model tank experiment and a hydraulic 
fracturing experiment. 

4.2. Application example of the seepage model 

We designed a discrete element model similar to the permeability 
meter to validate the seepage function, which can be used to measure 
the macro permeability coefficient and thermal conductivity of the 
model. Fig. 8a is the parameter calibration model we designed, the 
middle part is the rock and soil model we need to test, and the upper and 
lower voids are defined as pores, which are set as fluid boundaries 
during the simulation. By setting the micro permeability and thermal 
conductivity of the pore throats, the model has the ability of seepage and 

Fig. 6. (a) The initial state of the pore network. The arrow indicates the seepage direction, and the central element displaces under the action of pressure; (b) 
Distribution of the pore network after displacement of the central element. 

Fig. 7. Discrete element calculation flow chart.  
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heat transfer. Ignoring the gravitational head, the upper boundary of the 
model is given a constant high pressure and temperature. The lower 
boundary is given a constant low pressure and temperature, which are 
consistent with the initial model. Seepage will start under the action of 
the vertical downward pressure field. In order to quickly obtain the 
permeability coefficient of the model, the coordinates of elements in this 
simulation are locked (only in this simulation). In this simulation, only 
the migration of fluid is calculated and the solid–fluid coupling is not 
calculated. Fig. 8b and Fig. 8c show the temperature and pressure dis-
tribution when the seepage is stable. Four points (H = 0.3 m, 0.5 m, 0.7 
m, and 0.9 m) are chosen at different depths in the middle of the model 
to observe the pressure and temperature changes. As shown in Fig. 9a 
and Fig. 9b, the distribution of temperature and pressure after equilib-
rium are consistent with the theory, and the gradient of pressure and 
temperature gradient at different depths are consistent. 

Fig. 10 shows the flow rates of the upper and lower boundaries. 
Under the action of the pressure field, the upper boundary velocity refers 
to the flow rate of the top pore with constant high pressure flowing into 
the soil per unit time. The lower boundary flow velocity refers to the 
flow rate of soil received by the bottom pores with constant low pressure 
per unit time. The migration of pressure and temperature need cost time 
because of the characteristics of the iterative calculation of discrete el-
ements. After a short delay, the pressure state at the bottom will change. 
With the redistribution of the internal pressure of the model, the flow 
rate of the upper boundary decreases rapidly and is equal to that of the 
lower boundary, which indicates that the seepage is stable. After the 
seepage is stable, the macro permeability coefficient of the model can be 
obtained according to Darcy’s law. The calibration of the heat transfer 

parameters is similar to that of the permeability coefficient. 
In order to make the macroscopic permeability coefficient of the 

model equal to that of the real rock and soil mass, we need to enlarge or 
reduce the microscopic permeability coefficient of the pore throat. The 
ratio of the actual permeability coefficient to that of the model is r 
(permeability coefficient ratio). We multiply the micro permeability 
coefficient of the pore throat by r to make the permeability coefficient of 
the model consistent with the actual value. In this way, we have pre-
liminarily solved the macro–micro conversion of the permeability 
coefficient. 

4.3. Application example of the hydrothermal coupling model 

The heat transfer of groundwater is of great significance for studying 
the distribution of geothermal fields and the transformation of surface 
energy (Fang et al., 2017; Zhou et al., 2022). This phenomenon can be 
better understood through numerical simulation of hydrothermal 
transport in porous media. The numerical simulation of geothermal 
fields is a typical hydrothermal coupling problem. Therefore, based on 
the geothermal model tank experiment, a discrete element model of 
hydrothermal coupling is established to verify the validation of the pore 
density flow model in hydrothermal coupling. The main body of this 
geothermal tank experiment is a sealed geothermal tank and a constant 
temperature water supply system (Fig. 11a). Water outlets and water 
inlets of the upper and lower aquifers are set on the top and bottom of 
the experimental geothermal tank. Fig. 11b is the top view of the 
arrangement of various temperature sensors. These sensors are inserted 
into the soil in the order of the top view, which can measure the 

Fig. 8. (a) Initial model; (b) schematic diagram of the temperature distribution; (c) schematic diagram of the pressure distribution.  

Fig. 9. (a) Changes in temperature at different depths; (b) changes in pressure at different depths.  
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temperature at different depths in the soil. DTS is the abbreviation of 
Distributed Temperature Sensing and FBG is the abbreviation of Fiber 
Bragg Grating. They all belong to the fiber optic sensor. PT100 is a 
temperature sensor packaged with platinum resistance PT100 element. 
DTS can measure temperature at all locations along the fiber but the 
spatial resolution of a single fiber is not high. Therefore, the fiber in this 
experiment is tightly and uniformly wound on a rod equal to the height 
of the soil to improve the spatial resolution. 

In this experiment, the soil is divided into four layers according to the 
material properties. From bottom to top are layer1, layer2, layer3 and 
layer4. Layer1 consists of breccia with a height of 100 mm. Layer2 
consists of sand and kaolin in a 9:1 ratio with a height of 1015 mm. Layer 
3 consists of sand and kaolin in a ratio of 8.5:1.5 with a height of 255 
mm. Layer4 consists of breccia with a height of 100 mm. The perme-
ability of the bottom layer and the top layer is the highest, and the 
permeability of the third layer is the lowest. As shown in Fig. 11c, the 
discrete element model established according to the experiment is 3 m 
wide and 1.5 m high. The average particle size of the elements in the 
model is 0.04 m. Different colors represent these soil layers with 
different material properties and thicknesses. 

The main content of this experiment is to test the effect of the flow of 
groundwater at a lower temperature on the distribution of the 
geothermal field. First, the initial temperature inside the tank was set to 
9 ◦C by using water outlets and water inlets. Then, the water outlets and 
water inlets were turned off on the top layer, and cold water was flowed 
at 3 ◦C in the bottom layer. In this discrete element model, the tem-
perature of the fluid in the tank is set to 9 ◦C. The pore fluid domain in 
the lower left corner is given constant high pressure and constant low 
temperature (3 ◦C) to simulate groundwater inflow. The pore fluid 
domain in the lower right corner is given constant low pressure and high 
temperature (9 ◦C) to simulate groundwater outflow. The constant high 
pressure is set to 10 times the initial water pressure, and the constant 
low pressure is the same as the initial water pressure. The numerical 
simulation results are shown in Fig. 12. The pressure field enforces 
seepage mainly along the bottom layer, which causes a rapid decrease in 
the temperature of the bottom layer. The low temperature spreads 
slowly to the upper layer. 

DTS2, DTS5, and DTS9 are selected to study the change in temper-
ature at different sections with time (the specific locations are shown in 
Fig. 11b). Fig. 13a is the temperature cloud diagram obtained by the 

Fig. 10. Seepage volume at the upper and lower boundaries.  

Fig. 11. (a) Geothermal tank experiment equipment; (b) Top view of the sensor arrangement; (c) Discrete Element Model of Experiments (Different colors represent 
soil layers with different material properties and thicknesses). 
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simulation. Fig. 13b is the temperature cloud diagram monitored by the 
DTS. The X-axis represents time, and the Y-axis represents soil depth. 
Colors represent temperature values. As shown in Fig. 13, it can be seen 
that there is a short delay in the temperature change at the beginning, 
which is caused by the different positions of the sensors. The tempera-
ture of the bottom layer drops rapidly to 3 ◦C under the action of seepage 
and the temperature of the upper layers increases slowly. It can be seen 
that the temperature spread further in experiments than in DEM. The 
reason for this phenomenon is that the experimental tank cannot be 
completely insulated. Since the experiments lasted for a long time in 
winter, the heat in the experimental tank diffused outward, which led to 
the decrease of temperature in experiments. However, the simulations 
were carried out in an adiabatic environment, which caused the tem-
perature to spread farther in DEM than in experiments. In general, the 

simulation results correspond well with the experimental results, which 
shows the influence of on the distribution of ground temperature. This 
simulation verifies the feasibility of the hydrothermal coupling and lays 
a foundation for future multi-field coupling research. 

4.4. Application example of the fluid–solid coupling model 

Rock hydraulic fracturing involves a complex fluid–solid coupling 
process. The propagation law of hydraulic fractures and the coupling 
mechanism between fracturing fluid and rock mass are current research 
hotspots and difficulties (Zhang et al., 2022). Zhang proposed a novel 
Galerkin-based numerical approach named global cracking elements 
method (GCEM) for studying the quasi-brittle fracture and the direction 
of crack propagation (Zhang and Zhuang, 2018; Zhang and Mang, 

Fig. 12. The temperature field distribution of pores at different time in the simulation (0.25 T, 0.5 T, 0.75 T and T).  

Fig. 13. Temperature-time cloud diagrams (The temperature sensors DTS2, 5, and 9 are located on the left, middle and right of the tank, respectively, and the 
distance from the left side of the tank is 0.45 m, 1.35 m and 2.55 m) (a) simulated by MATDEM; (b) measured by DTS. 
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2020). To validate the fluid–solid coupling model, we simulate the hy-
draulic fracturing to compare with real experimental results. According 
to various physical and mechanical parameters of the hydraulic frac-
turing test, the hydraulic fracturing model of single fracture granite is 
established. The meso-parameters of the model were calibrated by 
MatDEM. 

The average diameter of the elements is set to 1 mm, and the 
dispersion coefficient is set to 0.25. The element diameter is normally 
distributed between 0.80 mm and 1.24 mm. As shown in Fig. 14a, the 
model has a width of 75 mm and a height of 150 mm, which contains 
13,437 elements. Then, the elements that make up the model will be 
given specific mechanical properties. According to the macro- 
mechanical properties of granite and the conversion formula of DEM 
(Liu et al., 2017), the micromechanical parameters of the elements can 
be obtained. The macro- and micro-mechanical parameters of the ma-
terial are shown in Table 1. 

Finally, precast cracks with a length of 20 mm can be obtained by 
deleting elements (Fig. 14b). A pressure of 20 MPa is applied to the top 
of the granite samples to simulate the axial pressure applied in the real 
world. Different water pressures are applied in the central area of the 
hydraulic fracture to simulate the hydraulic fracturing process until the 
sample breaks. The time step set by the simulation is 8 × 10− 8 s, 1000 
iterations per cycle. The simulated object is selected as the prefabricated 
fracture sample, which forms an angle of 30◦, 60◦ and 90◦ with the 
horizontal plane. The initial state of the model is shown in Fig. 14b. 

By comparing the experimental results with the simulation results (as 
shown in Fig. 15), it can be seen that the crack develops from both ends 
in the direction of maximum principal stress. At the same time, we can 
see that the experimental results (90◦) are not completely developed 
strictly along the direction of the maximum principal stress. There are 
some micro-cracks in the real rock, which make the mechanical struc-
ture of the rock have a certain anisotropy, and make the extension di-
rection of the cracks deflect to a certain extent. However, there are no 
micro-cracks in the simulated rock, and the overall mechanical prop-
erties are isotropic, so the simulated cracks develop along the direction 
of the maximum principal stress. In general, the simulation process and 
results are consistent with the experiment, verifying the feasibility of 
applying the fluid–solid coupling model to hydraulic fracturing. In 
addition, the development of fractures driven by fluid and the redivision 
of networks during large deformation are also validated. 

5. Discussion and conclusions 

In this paper, a pore density flow model is constructed based on the 
Discrete Element Method (DEM) and the Pore Network Model (PNM) 
and we can apply it in various fields. The Pore Network Model is adopted 

to the calculation of the fluid for exerting its advantages in solving 
seepage in porous media. The structure and parameters of the pore 
network are controlled by the structure of discrete elements. In the 
seepage calculation based on Darcy’s law, the fluid state equation con-
taining temperature parameters and heat exchange equation are intro-
duced to ensure the correctness of the hydrothermal coupling model. 
The Discrete Element Method is adopted to track the behavior of solid 
particles. In this model, the structural changes of the pore network is 
well considered during the deformation and destruction of the discrete 
element model. Compared with the conventional model, the model in 
this paper can simulate the fluid-driven fracturing for complex fractured 
porous media, which can simulate the intersection and development of 
arbitrarily complex fractures. This model is implemented in the high- 
performance discrete element software MatDEM. Both the redivision 
of pore network and the calculation of particle motion use matrix 
calculation, which is highly efficient, especially for large-scale 
calculations. 

To demonstrate the capability and applicability of the proposed 
model in multi-field coupled and fluid–solid coupled applications, three 
numerical simulations were performed. The seepage simulation 
demonstrated the validity of the pore network and the seepage model. In 
the simulation of the geothermal model tank experiment, the immigra-
tion of fluids and heat can be accurately captured, which proves the 
feasibility of the hydrothermal coupling model. The simulations of hy-
draulic fracturing experiment emphasize the importance of two-way 
coupling. The development of fractures driven by fluid is captured in 
this simulation, which demonstrates the applicability of fluid–solid 
coupling and the importance of bidirectional coupling. The results of the 
simulation are in good agreement with those of the corresponding 
experiment. 

In the considered numerical simulations, the potential and applica-
bility of the pore density flow model is demonstrated, albeit within a 
limited range (i.e. single-phase seepage in porous saturated media). 
However, this model can be combined with multiphase flow theory, 
liquid bridge model and other theories to build multiphase saturated/ 
unsaturated models to solve the complex multi-field coupling and flu-
id–solid coupling problems in geotechnical engineering. First, through 
the phase expansion of the fluid state equation, the state of the fluid 
changes from single phase to multiphase, which can be used to simulate 
magma intrusion and freeze–thaw effects. Then, by combining the solute 
transport equation with the seepage model, more complex multi-field 
coupled phenomena can be simulated. Finally, by simulating the 
seepage of unsaturated fluids and determining the forces between par-
ticles based on the liquid bridge model, the formation mechanism of 
rainfall landslides can be explored. These works need to be further 
developed so that the proposed numerical model can be more deeply 
used in the simulation of multi-field coupling and fluid–solid coupling. 

Fig. 14. The discrete element model (a) The initial stacking model; (b) The 
elements in the middle of the model are removed to form precast cracks (90◦). 

Table 1 
Macro- and micro-mechanical parameters of materials.  

Macroscopic mechanical 
parameters 

Micromechanical parameters 

Mechanical parameters Test 
value 

Mechanical parameters Average 
value 

Young’s modulus E/GPa 77.10 Normal stiffness Kn/ 
(N⋅m− 1) 

2.57 × 107 

Poisson’s ratio ν 0.18 Tangential stiffness Ks/ 
(N⋅m− 1) 

3.14 × 106 

tensile strength Tu/MPa 6.49 Fracture displacement 
Xb/m 

1.40 × 10− 6 

Compressive strength Cu/ 
MPa 

128 Shear resistance Fs0/N 94.3 

Coefficient of internal 
friction μi 

1 Coefficient of friction μp 2.0  
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Kačur, J., Mihala, P., Tóth, M., 2017. Heat exchange and unsaturated-saturated flow in 
porous media. Defect Diffusion Forum 380, 107–114. 

Kharaghani, A., Metzger, T., Tsotsas, E., 2011. A proposal for discrete modeling of 
mechanical effects during drying, combining pore networks with DEM. AIChE J. 57. 

Kuhn, M.R., Daouadji, A., 2020. Simulation of undrained quasi-saturated soil with pore 
pressure measurements using a discrete element (DEM) algorithm. Soils Found. 60 
(5), 1097–1111. 

Liu, C., Le, T.C., Shi, B., Zhu, Y., 2020. Discussion on three major problems of 
engineering application of the element discrete element method. Chinese J. Rock 
Mech. Eng. 39 (06), 1142–1152. 

Liu, C., Pollard, D.D., Gu, K., Shi, B., 2015. Mechanism of formation of wiggly 
compaction bands in porous sandstone: 2. Numerical simulation using discrete 
element method. J. Geophys. Res. Solid Earth 120 (12), 8153–8168. 

Liu, C., Pollard, D.D., Shi, B., 2013. Analytical solutions and numerical tests of elastic and 
failure behaviors of close-packed lattice for brittle rocks and crystals. J. Geophys. 
Res. Solid Earth 118 (1), 71–82. 

Liu, C., Xu, Q., Shi, B., Deng, S., Zhu, H., 2017. Mechanical properties and energy 
conversion of 3D close-packed lattice model for brittle rocks. Comput. Geosci. 103 
(JUN.), 12–20. 

Long, J., Li, C., Liu, Y., Feng, P., Zuo, Q., 2022. A multi-feature fusion transfer learning 
method for displacement prediction of rainfall reservoir-induced landslide with step- 
like deformation characteristics. Eng. Geol. 297, 106494-. 

Lu, C.Y., Tang, C.L., Chan, Y.C., Hu, J.C., Chi, C.C., 2014. Forecasting landslide hazard by 
the 3d discrete element method: a case study of the unstable slope in the lushan hot 
spring district, central taiwan. Eng. Geol. 183, 14–30. 

Luo, H., Xing, A., Jin, K., Xu, S., Zhuang, Y., 2021. Discrete element modeling of the 
Nayong rock avalanche, Guizhou, China constrained by dynamic parameters from 
seismic signal inversion. Rock Mech. Rock Eng. 54 (4), 1629–1645. 

Nian, T.K., Li, D.Y., Liang, Q.H., Wu, H., Guo, X.S., 2021. Multi-phase flow simulation of 
landslide dam formation process based on extended coupled DEM-CFD method. 
Comput. Geotech. 140, 104438. 

Norouzi, H.R., Zarghami, R., Sotudeh-Gharebagh, R., Mostoufi, N., 2016. CFD-DEM 
Applications to Multiphase Flow. John Wiley & Sons Ltd. 

Place, D., Mora, P., 1999. The lattice solid model to simulate the physics of rocks and 
earthquakes: incorporation of friction. J. Compos. Phys. 150 (2), 332–372. 

Qu, D., Luo, Y., Li, X., Wang, G., Xu, K., 2020. Study on the stability of rock slope under 
the coupling of stress field, seepage field, temperature field and chemical field. Arab. 
J. Sci. Eng. 45 (10), 8315–8329. 

Rettinger, C., Rüde, U., 2018. A coupled lattice boltzmann method and discrete element 
method for discrete particle simulations of particulate flows. Comput. Fluids 172, 
706–719. 

Sizkow, S.F., El Shamy, U., 2021. SPH-DEM simulations of saturated granular soils 
liquefaction incorporating particles of irregular shape. Comput. Geotech. 134, 
104060. 

Sizkow, S.F., El Shamy, U., 2022. SPH-DEM modeling of the seismic response of shallow 
foundations resting on liquefiable sand. Soil Dyn. Earthq. Eng. 156, 107210. 

Tsang, Y.W., Witherspoon, P.A., 1981. Hydromechanical behavior of a deformable rock 
fracture subject to normal stress. J. Geophys. Res. Solid Earth 19 (5), 107. 

Wautier, A., Bonelli, S., Nicot, F., 2017. Scale separation between grain detachment and 
grain transport in granular media subjected to an internal flow. Granular Matter 19 
(2). 

Xu, W.J., Yao, Z.G., Luo, Y.T., Dong, X.Y., 2020. Study on landslide-induced wave 
disasters using a 3D coupled SPH-DEM method. Bull. Eng. Geol. Environ. 79 (1), 
467–483. 

Xue, Y., Zhou, J., Liu, C., Far, M.S., Zhang, J., 2021. Rock fragmentation induced by a 
TBM disc-cutter considering the effects of joints: a numerical simulation by DEM. 
Comput. Geotech. 136, 104230. 

Yuan, C., Chareyre, B., Darve, F., 2016. Pore-scale simulations of drainage in granular 
materials: finite size effects and the representative elementary volume. Adv. Water 
Resour. 95, 109–124. 

Zhang, J., Yu, H., Xu, W., Lv, C., Micheal, M., Shi, F., Wu, H., 2022. A hybrid numerical 
approach for hydraulic fracturing in a naturally fractured formation combining the 
XFEM and phase-field model. Eng. Fract. Mech. 108621. 

Fig. 15. (a) The development of cracks in the numerical simulations; (b) The development of cracks in the experiments.  

Y. Zhu et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0266-352X(22)00455-4/h0005
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0005
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0005
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0010
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0010
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0010
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0015
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0015
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0020
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0020
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0020
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0025
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0030
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0030
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0035
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0035
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0035
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0040
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0040
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0045
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0045
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0055
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0055
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0055
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0065
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0065
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0070
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0070
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0075
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0075
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0075
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0080
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0080
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0080
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0085
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0085
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0085
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0090
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0090
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0090
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0095
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0095
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0095
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0100
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0100
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0100
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0105
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0105
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0105
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0110
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0110
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0110
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0115
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0115
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0115
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0120
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0120
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0125
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0125
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0130
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0130
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0130
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0135
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0135
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0135
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0140
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0140
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0140
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0145
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0145
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0150
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0150
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0155
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0155
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0155
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0160
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0160
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0160
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0165
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0165
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0165
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0175
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0175
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0175
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0180
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0180
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0180


Computers and Geotechnics 154 (2023) 105118

12

Zhang, Y.M., Mang, H.A., 2020. Global cracking elements: a novel tool for Galerkin- 
based approaches simulating quasi-brittle fracture. Int. J. Numer. Meth. Eng. 121, 
2462–2480. 

Zhang, Y.M., Zhuang, X., 2018. Cracking elements: a self-propagating strong 
discontinuity embedded approach for quasi-brittle fracture. Finite Elements Anal. 
Des. 144(MAY), 84-100. 

Zheng, X., Duan, W.Y., Ma, Q.W., 2010. Comparison of improved meshless interpolation 
schemes for SPH method and accuracy analysis. J. Mar. Sci. Appl. 9 (3), 223–230. 

Zhou, X.P., Du, E.B., Wang, Y.T., 2022. Thermo-hydro-chemo-mechanical coupling 
peridynamic model of fractured rock mass and its application in geothermal 
extraction. Comput. Geotech. 148, 104837. 

Zhou, Y., Chen, L., Gong, Y., Wang, S., 2021a. Pore-scale simulations of particles 
migration and deposition in porous media using LBM-DEM coupling method. 
Processes 9 (3), 465. 

Zhou, Z.Q., Ranjith, P.G., Yang, W.M., Shi, S.S., Wei, C.C., Li, Z.H., 2019. A new set of 
scaling relationships for DEM-CFD simulations of fluid–solid coupling problems in 
saturated and cohesiveless granular soils. Computat. Part. Mech. 6 (4), 657–669. 

Zhou, Z., Ding, H., Gao, W., Xu, L., 2021b. Study on mechanical properties of soil-rock 
mixture of various compactness subjected to freeze-thaw cycles. Sci. Cold Arid 
Regions 13 (5), 450–462. 

Further reading 

Jackson, R., 1997. Locally averaged equations of motion for a mixture of identical 
spherical particles and a Newtonian fluid. Chem. Eng. Sci. 52 (15), 2457–2469. 

Jiang, M.J., 2019. New paradigm for modern soil mechanics: Geomechanics from micro 
to macro. Chinese J. Geotech. Eng. 41 (02), 195–254. 

Yuan, C., Chareyre, B., 2017. A pore-scale method for hydromechanical coupling in 
deformable granular media. Comput. Methods Appl. Mech. Eng. 318 (MAY1), 
1066–1079. 

Zhou, Z.Y., Kuang, S.B., Chu, K.W., Yu, A.B., 2010. Discrete particle simulation of 
particle–fluid flow: model formulations and their applicability. J. Fluid Mech. 661, 
482–510. 

Y. Zhu et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0266-352X(22)00455-4/h0185
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0185
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0185
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0195
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0195
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0200
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0200
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0200
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0205
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0205
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0205
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0210
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0210
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0210
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0215
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0215
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0215
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0050
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0050
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0060
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0060
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0170
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0170
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0170
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0220
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0220
http://refhub.elsevier.com/S0266-352X(22)00455-4/h0220

	A multi-field and fluid–solid coupling method for porous media based on DEM-PNM
	1 Introduction
	2 The basic principle of DEM
	3 The pore density flow model
	3.1 The structure of pore network based on DEM
	3.2 Fluid state equation
	3.3 Two-dimensional pore seepage model
	3.4 Hydrothermal coupling model
	3.5 Fluid-solid coupling model
	3.5.1 The search algorithm of pore network
	3.5.2 The effect of solids on fluids
	3.5.3 The effect of solids on fluids
	3.5.4 Re-division of the pore network


	4 Verification Examples
	4.1 Development Platform and Calculation process
	4.2 Application example of the seepage model
	4.3 Application example of the hydrothermal coupling model
	4.4 Application example of the fluid–solid coupling model

	5 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References
	Further reading


