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Abstract Wiggly compaction bands in porous aeolian sandstone vary from chevron shape to wavy
shape to nearly straight. In some outcrops these variations occur along a single band. A bonded close-packed
discrete element model is used to investigate what mechanical properties control the formation of wiggly
compaction bands (CBs). To simulate the volumetric yielding failure of porous sandstone, a discrete element
shrinks when the force state of one of its bonds reaches the yielding cap defined by the failure force and
the aspect ratio (k) of the yielding ellipse. A Matlab code “MatDEM3D” has been developed on the basis of
this enhanced discrete element method. Mechanical parameters of elements are chosen according to the
elastic properties and the strengths of porous sandstone. In numerical simulations, the failure angle between
the band segment and maximum principle stress decreases from 90° to approximately 45° as k increases
from 0.5 to 2, and compaction bands vary from straight to chevron shape. With increasing strain, subsequent
compaction occurs inside or beside compacted elements, which leads to further compaction and
thickening of bands. The simulations indicate that a greater yielding stress promotes chevron CBs, and
a greater cement strength promotes straight CBs. Combined with the microscopic analysis introduced
in the companion paper, we conclude that the shape of wiggly CBs is controlled by the mechanical
properties of sandstone, including the aspect ratio of the yielding ellipse, the critical yielding stress, and
the cement strength, which are determined primarily by petrophysical attributes, e.g., grain sorting,
porosity, and cementation.

1. Introduction

Compaction bands (CBs) are tabular structures formed in porous granular sedimentary rock (e.g., sandstone)
and result from strain localization to narrow tabular bands. They represent one kinematic end-member of the
family of deformation bands [Aydin et al., 2006]. At the microscale, the formation of CBs involves fracturing,
grain rotation, and pore collapse [Mollema and Antonellini, 1996; Sternlof et al., 2005; Eichhubl et al., 2010].
Fluid transport (e.g., of ground water and hydrocarbon resources) and the stress field may be significantly
changed as CBs form, due to the loss of porosity and compaction [Sternlof et al., 2004; Deng et al., 2015a].
Compaction bands were observed first in the Valley of Fire State Park, Nevada [Hill, 1989], and later in the
Kaibab monocline, Utah [Mollema and Antonellini, 1996].

Hill [1989] identified two types of tabular CBs (T1 and T2) that form a conjugate set with a dihedral angle
of approximately 90° (Figure 1b) and wiggly CBs (T3) with a zigzag trace (Figures 1a and 1b). As shown in
Figure 1a, the wiggly CBs have alternating segments subparallel to T1 and T2, and show chevron (T31) or
wavy (T32) patterns. They became nearly straight CBs (T33), when the angle between the neighboring
segments increase to approximately 180°. Via force chain analysis of thin sections, Eichhubl et al.
[2010] inferred that the wiggly CBs were perpendicular to the direction of maximum principle stress
(σ1, azimuth is approximately 104°), and the tabular T1 and T2 CBs are shear-enhanced CBs that form
at 38 to 53° to σ1. Therefore, in Figure 1a, the failure angle between the wiggly band segments and
the direction of σ1 increases from chevron (approximately 45°) to wavy (65°) to straight (90°), and only
the straight T33 CBs result from pure compaction. Compaction bands with irregular zigzag shape also
have been produced in laboratory triaxial compressive tests of porous sandstone [e.g., Wong et al.,
2001; Baud et al., 2004]. However, uncertainties about the mechanism of formation of wiggly CBs raise
the question: what petrophysical attributes and mechanical properties control the formation of CBs with
these different shapes?
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The host rock of compaction bands
has high porosity [Sternlof et al., 2005;
Liu et al., 2015], and the loss of porosity
is a primary characteristic of CBs
[Sternlof et al., 2005]. For a rock that
exhibits a significant component of
compactive yielding during deforma-
tion, such as the porous sandstone,
there is a cap on graphs, for exam-
ple, of deviatoric stress versus effec-
tive mean stress, that defines inelastic
volume strain yielding [Olsson, 1999;
Issen and Rudnicki, 2000; Issen and
Rudnicki, 2001]. The yielding envelope
tends to shrink with increasing
porosity and may also be influenced
by grain size, cementation, and clay
content [Wong and Baud, 2012].
Previous studies have shown that the
cap model of the yield condition is
appropriate for porous sandstones
[e.g., Wong et al., 1997; Rudnicki, 2004].

A series of theoretical analyses [e.g.,
Aydin et al., 2006; Chemenda, 2009;

Das et al., 2011] have been proposed to interpret the mechanics of formation of compaction bands.
Numerical models also have been used to investigate the generation and the propagation of CBs, includ-
ing a spring network model [Katsman et al., 2005], finite difference model [e.g., Chemenda, 2009;
Chemenda, 2011; Chemenda et al., 2012], finite element model [e.g., Das et al., 2013], and discrete element
model [Wang et al., 2008; Marketos and Bolton, 2009; Rahmati et al., 2014]. In particular, the discrete
element method [Cundall and Strack, 1979] has been demonstrated to be a good tool for simulating the
micromechanics of compaction bands [e.g., Antonellini and Pollard, 1995; Rahmati et al., 2014], because
it permits large relative motion and dynamic evolution [e.g., Wang et al., 2008]. In order to simulate the
inelastic yielding of CBs,Wang et al. [2008] adapted a method introduced by Katsman et al. [2005], in which
a discrete element shrinks when one of its normal contact stresses attains a critical value. Their simulation
results indicate that the development of discrete compaction bands is promoted in a relatively homoge-
neous model [Wang et al., 2008]. Three-dimensional bonded discrete element models have been used
to simulate the generation and propagation of CBs [Marketos and Bolton, 2009; Dattola et al., 2014] and
drilling-induced compaction bands [Rahmati et al., 2014], which provide new insights for the micromecha-
nics of CBs.

One of the major objectives of this paper is to clarify the mechanism of the transition of compaction bands
from chevron to wavy to straight CBs as documented in Figure 1a. In the companion paper [Liu et al.,
2015], petrographic analysis has shown that the shapes of wiggly CBs are correlated with the grain sorting
and the porosity of sandstone. It is inferred that the yielding cap of rock is changed when these two factors
vary, resulting in the different types of wiggly CBs. In this paper, an enhanced discrete element method is
used to simulate the development of compaction bands. Elements in the model are close packed, and each
element represents a pore structure, i.e., an assemblage of several rock grains. In correspondence with the
yielding failure of sandstone, there is a yielding cap for the discrete elements. An element will be compacted
(shrink) when the force state of one of its bonds reaches its yielding cap. A series of numerical simulations
with different yielding caps of elements are carried out to investigate the mechanism of formation of wiggly
CBs. The influences of cementation and yielding stress on the failure angle and the shapes of wiggly CBs are
discussed. Finally, the petrophysical attributes and mechanical properties that influence the shape of wiggly
CBs are addressed. In this study, the convention that compressive stresses are positive is used, and the
maximum principal stress is represented by σ1.

Figure 1. Outcrop photographs taken in the area studied by Hill [1989].
The azimuth of the estimated maximum compressive stress (σ1) is
approximately 104°. (a) Transition of band type from chevron to wavy to
straight CBs, as failure angle (γ) increases from approximately 45° to 65° to
90°. (b) Wiggly CBs merged into tabular shear-enhanced CBs. Figure 1b
was taken about 2m from Figure 1a.
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2. The Discrete Element Model
2.1. Basic Discrete Element Model

The discrete element method (DEM) was first introduced by Cundall and Strack [1979] to study the behavior
of granular assemblies. Themethod has been enhanced to a close-packed lattice solid model that was used in
the simulation of the dynamical processes associated with earthquakes [Mora and Place, 1993, 1994]. Further,
a bonded discrete element model was introduced to simulate the behaviors of cohesive materials [Potyondy
and Cundall, 2004], e.g., soil and rock. The bonded lattice solid model has been applied in the investigation of
the kinematic characteristics of structures [e.g., Hardy and Finch, 2006; Yin et al., 2009].

In this study, the granular model is made up of a series of uniform discrete elements, which are close packed
(hexagonal lattice) to represent a block of sandstone (Figure 2a). The elements of the model are bonded by
breakable elastic springs (Figure 2b), and the spring force occurs only at contacts between neighboring
elements. The normal spring force (Fn) between two elements is the product of the interelement stiffness
(Kn) and the relative normal displacement (Xn). Elements are originally bonded to each other, until Xn reaches
the breaking displacement (Xb), whereupon the bond breaks and the tensile force between them goes
to zero.

The bonded model with a normal spring is similar to the spring network model, which has been used by
Katsman et al. [2005] to simulate the formation of compaction bands. However, shear force and cohesion
between elements are not considered in their model. In Figure 2c, a shear spring is used in this model to
simulate the shear force between elements. Similar to the normal force, the shear spring force is the
product of the shear stiffness (Ks) and the shear relative displacement (Xs). An initial shear resistance (Fs0,
i.e., cohesion) exists between the elements, and the maximum shear force allowed by Coulomb friction is
[Liu et al., 2013]

FSmax ¼ FS0 þ μpFn (1)

where μp is the interelement coefficient of friction. The intact bond will break when the shear force exceeds
FSmax, and themaximum shear force of the broken bond (FSmax′) reduces to μp · Fn [Hazzard et al., 2000]. When
the bond is broken and the external shear force exceeds the limit FSmax′, two elements start slipping relative
to each other.

In numerical simulation, the resultant force acting on an element is the summation of the normal forces,
shear forces, viscous force (see section 3.1), and gravity on the element. The dynamic evolution of the model
can be simulated by integrating the equation of motion using Newtonian physics and a time-stepping
algorithm [Cundall and Strack, 1979; Potyondy and Cundall, 2004; Liu et al., 2013]. As the step time is very small,
the acceleration of an element is assumed to be constant within a time step, which allows the calculation of
velocity and displacement of each element.

2.2. Yielding Failure of Elements

The formation of compaction bands is associated with grain crushing and collapse of pore structures at the
microscale. In discrete element models, there are several methods to simulate compaction failure. This pro-
cess has been simulated by removing the elements [Couroyer et al., 2000] or reducing the Young’s modulus of
the elements [Marketos and Bolton, 2009], when the stress acting on the elements exceeds a limit. Such meth-
ods oversimplify the evolution of damage, as the compaction bands may be stiffer at larger strains [Wong and
Baud, 2012]. In other studies, the crushing behavior of rock grains was simulated via a cluster technique
[Ergenzinger et al., 2011], in which a rock grain is represented by an assemblage of discrete elements.
Using a similar method, a broken element can be replaced by several smaller elements to simulate grain
crushing [Tsoungui et al., 1999; Marketos and Bolton, 2009].

Themethod used in this study is an enhancement of that used by Katsman et al. [2005] andWang et al. [2008],
who simulate compaction by reducing the bond length by a small value when the normal contact stresses or
forces reach critical values. The element (grain) crushing criterion was defined only in terms of contact forces
acting on the element. Although the spatial distribution of the contact forces around the element could affect
element crushing, previous simulation results [Katsman et al., 2005;Wang et al., 2008] have shown that different
types of compaction bands can be simulated using the method.
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In correspondence with the capmodel [Olsson, 1999; Issen and Rudnicki, 2000] that involves normal and shear
stresses, the criterion of compaction is determined by both the normal and shear forces in this study. As
shown in Figure 3a, an element does not correspond to a single grain of sandstone but represents a pore
structure surrounded by several grains [Katsman et al., 2005], i.e., an assemblage of grains. As shown in the
schematic diagram of Figure 3a, the rock grains are bonded to each other to form a pore structure in the ori-
ginal assemblage, and the porosity is relative high. When the rock is compacted under high compressive
stresses, the grains rearrange and the pore structure collapses, reducing the porosity of the assemblage.
To simulate this compaction effect, under a certain force state, the original element is compacted and its
radius is reduced. The mass of the compacted element remains constant, while its “porosity” reduces
(Figure 3a). In addition to tensile and shear failure, a yielding criterion of discrete elements is used to simulate
the collapse of pore structures. The yielding cap of an element (Figure 3b) is a portion of an ellipse defined by

Fn
2 þ FS=kð Þ2 ¼ Ff

2 (2)

where Fn and FS are, respectively, the normal and shear forces of a bond, k is the aspect ratio of the yielding
ellipse, and Ff is the failure force, i.e., the maximum compressive force.

The failure criterion of an element can be described by a failure envelope of a bond, which is plotted in coor-
dinates of FS–Fn (Figure 3b). When k= 1, the failure envelope is defined by segments AB, BC, and arc CD. The
interelement bond breaks in opening mode when the bond normal force exceeds the breaking force
(Fb = Kn · Xb). The onset of shear failure is demarcated by the straight line BC and is determined by equation
(1). The onset of compaction yielding is indicated by the cap (arc CD). An element is compacted and shrinks
when its force state reaches arc CD. As described in equation (2) and Figure 3b, the size of the cap ellipse is
determined by the failure force, Ff, while the shape of the ellipse is determined by the aspect ratio, k. Different
yielding caps can be obtained when k varies. Specifically, the compaction of an element is only determined
by the normal force when k=∞, and that is the failure criterion of element bonds used by Katsman et al.
[2005] and Wang et al. [2008].

2.3. Micromechanical Parameters and Model Mechanical Properties

A Matlab code “MatDEM3D” has been developed on the basis of the enhanced discrete element method,
which considers the failures in tension, shear, and compaction. MatDEM3D is a three-dimensional numerical
code. Therefore, one layer of elements is used to investigate the two-dimensional behavior of compaction
bands. The model geometry (Figure 4) used in this study is composed of bonded elements with identical size
and mechanical parameters. The mean grain diameter of Aztec Aeolian sandstone is about 0.25mm within a
range of about 0.1 to 0.5mm [Flodin et al., 2005]. To represent a pore structure that is composed of several

Figure 2. (a) A close-packed discrete element model. (b) Two elements are bonded by a breakable elastic spring along the
normal direction and interact through a spring force (Fn). (c) Two elements also are bonded by a spring along the tangential
direction to simulate the shear force (FS). Xn is the relative normal displacement, and Xs is the relative shear displacement.
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grains (Figure 3a), an element diameter of 1mm is used. The model is bounded with rigid planes on its four
sides. The planes are smooth, in which case there is no friction between the planes and the boundary
elements. Discrete elements are close packed to form a hexagonal network, which is similar to the spring
network model used by Katsman et al. [2005]. The model, 4.8 cm in width, 1.14 cm in height, and 1mm in
thickness, includes 618 elements.

Using this small model with a regular packing, we investigate mechanical factors that lead to different direc-
tions of segments of compaction bands, i.e., different failure angles. However, a larger model also is used to
investigate the growth of compaction bands and the influences of model size on the results in section 3.5.
Similar to the two-dimensional discrete element model [Hardy and Finch, 2006], the element mass (m) of
the three-dimensional model is determined by

m ¼ ρ�
ffiffiffi
2

p
d3=2

� �
(3)

where ρ is the density of sandstone (2.25 × 103 kg/m3), d is the element diameter (0.001m). According to the
equation, the element mass is 1.591 × 10�6 kg.

In order to investigate the influence of micromechanics on the formation of compaction bands, the interele-
ment parameters must be chosen according to themechanical properties of the sandstone. The regular pack-
ing model has analytical solutions between the interelement mechanical parameters and the model
mechanical properties [Liu et al., 2013]. As described in the previous section, the discrete element model
involves the following five independent interelement parameters: Kn, Ks, Xb, FS0, and μp. Similar to themethod
of Liu et al. [2013], the conversion formulas between mechanical properties of rock and interelement para-

meters of three-dimensional discrete
elements have been derived and are
given in Appendix A. Using these formu-
las, the five interelement parameters
can be determined by five mechanical
properties of sandstone: Young’s modu-
lus (E), Poisson’s ratio (v), tensile
strength (Tu), compressive strength
(Cu), and coefficient of intrinsic friction
(μi). Table 1 gives the initial mechanical
properties of the sandstone [Bieniawski,
1984] and the calculated interelement
mechanical properties. Mechanical prop-
erties of the close-packed model deter-
mined by the conversion formulas are

Figure 3. (a) A discrete element represents an assemblage of grains in porous sandstone. When the assemblage is
compacted, its porosity and volume reduce. (b) Failure envelope of discrete element includes an elliptical yielding cap.
An element will be compacted (shrink) when the force state of one of its bonds reaches the cap. Ff is the failure force; k is
the aspect ratio of the yielding ellipse; Fb is the breaking force; and FS0 is the initial shear resistance (i.e., cohesion).

Figure 4. The close-packed model with size 4.80 cm× 1.14 cm is bonded
by four smooth planes. In numerical simulation, the model is compressed
by the planes to generate compaction bands. Vertical compression is the
maximum principle stress (σ1); horizontal compression is σ2. Green color
elements are regular elements, and central blue color elements are
assigned 90% lesser failure force.
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generally a bit lower than the theoretical values [Liu et al., 2013]. Therefore, the model was compressed or
extended to test the effective mechanical properties. The tested values are given in Table 1. The detailed
processes and calculation methods of the model mechanical properties can be found in Liu et al. [2013].

According to the conversion formulas, interelement normal and shear stiffness are determined by Young’s
modulus and Poisson’s ratio. Experiment data [Bieniawski, 1984] for E of sandstone ranges from 10 to
46GPa with an average of 22GPa, while v ranges from 0.1 to 0.4 with an average of 0.2. Sternlof et al.
[2005] tested the apparent Young’s modulus of samples collected near Silica Dome from the results of triaxial
compression tests. The tested values are 16.5 and 21.0 GPa at the confining pressures of 10 and 50MPa,
respectively. They estimated a lithostatic paleostress of 30MPa. Therefore, a Young’s modulus of 20GPa
and a Poisson’ ratio of 0.2 were used in their model. More recently, Deng et al. [2015b] tested the Young’s
modulus of sandstone samples from the Valley of Fire. Theymeasured E from 4.8GPa to 6.5 GPa at a confining
pressures ranging from 10 to 30MPa. In this study, an intermediate Young’s modulus 15 GPa is used in the
conversion formulas, and the tested E (9.73 GPa) is between the measured values given by Deng et al.
[2015b] and Sternlof et al. [2005]. A Poisson’s ratio of 0.16 is used in the conversion formulas, and the tested
Poisson’s ratio of the model is 0.19.

In Table 1, the tested effective tensile strength (5.50MPa) and the compressive strength (118.51MPa) are
close to the mean values of published data, 5MPa and 96MPa, respectively [Bieniawski, 1984].
Interelement coefficient of friction (μp) controls the slope of the Mohr-Coulomb failure envelope of themodel
[Boutt and McPherson, 2002]. The μp used in the model is 0.3964, smaller than the value used in the previous
models, e.g., μp = 0.5 [Wang et al., 2008; Marketos and Bolton, 2009] and μp = 1.5 [Rahmati et al., 2014].
However, the tested coefficient of intrinsic friction (μi) of this model is 1.003, because the close-packed
geometry will lead to a greater overall μi.

Via calibration, a failure force Ff = 2·FS0 (26.36N) is used. When an element is compacted, its radius is reduced
by a constant value of ε · R (R is the element radius). Previous study has shown that compaction localization
forms and propagates only if there is a drastic reduction of stress on a compacted element [Wang et al., 2008].
Therefore, in their model Wang et al. adopted a value of 0.01 reduction of element radius when the element is
compacted. A much greater ratio ε= 0.1 was used by Katsman et al. [2005]. By using these values, stresses
between an element and its adjacent elements reduce to zero immediately when the element is compacted,
which promotes the propagation of pore collapses [Wang et al., 2008]. In this study, a lower ε of 0.005 is used,
and the radius of an element is reduced by 2.5 × 10�6m during compaction, which results in a reduction of
19.50N in interelement normal force (Fn). This value is a bit lower than the interelement failure force (26.36N).
Therefore, the normal force between a newly compacted element and its adjacent element is not always zero
but may be a value lower than 6.86 N. Because a collapsed pore structure may have a residual strength, a
lower ε of 0.005 is used in the model. In order to investigate the growth of compaction bands, the elements
are allowed to compact only two times.

In order to remain consistence with the conventions of the discrete element method, forces are used to describe
the failure criterions instead of stresses. The forces can be divided by effective area to calculate stresses and be
compared with the values used in some previous studies. As the effective area (Ae) of a three-dimensional
element is 0.7954 × 10�6m2 (π · d2/4), the cohesion (F · FS0/Ae) is 16.78MPa, and the interelement tensile
strength (cement strength, Fb/Ae) is 4.06MPa. The element yielding strength (Ff/Ae) is 33.56MPa. Wang
et al. [2008] used greater strengths for elements, e.g., tensile and shear bond strength of 100MPa, and

Table 1. Initial Mechanical Properties of Sandstone [Bieniawski, 1984], Micromechanical Parameters, and Tested Mechanical Properties of Model When Element
Diameter Is 0.001m

Initial Mechanical Properties of Sandstone Interelement Parameters Tested Mechanical Properties of Model

Young’s modulus 15 GPa Normal stiffness (Kn) 7.80 × 106 N/m Young’s modulus 9.73 GPa
Poisson’s ratio 0.16 Shear stiffness (Ks) 1.34 × 106 N/m Poisson’s ratio 0.19
Uniaxial tensile strength 10MPa Breaking force (Fb) 3.19 N Uniaxial tensile strength 5.50MPa
Uniaxial compressive strength 180MPa Shear resistance (FS0) 13.18 N Compressive strengtha 118.51MPa
Coefficient of intrinsic friction 1 Friction coefficient (μp) 0.3964 Coefficient of intrinsic friction 1.003

Failure force (Ff) 26.36 N Yielding stressa 39.23MPa

aYielding failure is disabled in the test of uniaxial compressive strength. Yielding stress is tested when the lateral planes are fixed.
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intragranular failure stress of 200MPa. This difference is justified because an element represents a pore
structure, which is less stiff than the grain elements used in the Wang et al. model. The mechanical properties
of the elements are close to those used by Marketos and Bolton [2009]. Both normal and shear stiffness are
4 × 106 N/m in their three-dimensional model, and the element yielding strength is 40MPa.

3. Numerical Simulations of Formation of Wiggly Compaction Bands

The interelement mechanical parameters in Table 1 are applied to themodel elements shown in Figure 4. The
numerical model with these mechanical parameters is called the original model. In this section, the original
model is used to simulate the generation and propagation of compaction bands. In section 4, the interele-
ment failure force and/or breaking force are doubled to investigate the influences of yielding stress and
cement strength on the formation of wiggly CBs.

3.1. The Numerical Simulation

Discrete element numerical simulation is a dynamic process; the displacement of boundaries and failure of
elements lead to wave propagation in the model. Seismic waves are attenuated, for example, by friction
and scattering, as they travel through rocks [Hazzard et al., 2000]. Therefore, an artificial viscosity (Fv) is used
to dissipate kinetic energy in the numerical model. The viscous force is proportional to the element velocity
and is defined by [Place et al., 2002; Finch et al., 2003]

Fv ¼ �η�x ′ (4)

where η is viscosity, and x’ is element velocity. In numerical simulations, a viscosity of 0.5023N s/m is used to
damp the dynamic waves. Numerical tests show that the kinetic energy of the model reduces rapidly using
this viscosity.

The four boundaries are moved toward the model center step by step, to simulate the tectonic loading
process. Stresses on boundary elements may increase significantly during a single step. In order to reduce
this stress increase, the boundary displacements must be very small. In each compressive step, the displace-
ments of the left and right planes (6.13 × 10�10m) are 30% of that of the top and bottom planes
(2.04 × 10�9m), so the maximum compressive stress (σ1) is vertical.

Detailed observations of compaction bands indicate that a compaction band initiates at a grain-scale flaw
[Sternlof et al., 2005], which collapses in response to the compressive stress. In Figure 4, four elements in
the center of model are set as the “seed” of compaction bands and are assigned 90% lesser failure force.
When the model is compressed, a compaction band starts from the seed. The step time of the simulations
is 4 × 10�8 s. After each compressive step, the model is run for 50 time steps to dissipate the seismic waves.
To generate compaction bands, the models are compressed by 18,000 steps. Discrete element numerical
simulation generally involves a huge calculation. The numerical simulations were run using a quad-core
CPU workstation, which has a peak performance of about 48 billion floating point operations per second.
A simulation of the small model takes about 1 h. For the large model with 2579 elements, the simulation
was run for 3.1 × 104 compressive steps and a total of 3.1 × 106 iterations, which took about 16 h.

3.2. Simulation Results With Different Yielding Caps

Three yielding caps with different aspect ratios (k), 0.5, 1, and 2 are used to define the failure behaviors of
three models (Figure 5a). The simulation results of the models are shown in Figures 5b–5d. The light green
balls in the figures are the original intact elements, and the red balls are the compacted elements. The com-
paction bands initiate at the model center. Depending on the aspect ratio of yielding ellipse, a compaction
band may propagate perpendicular to or inclined to σ1. As both the models and the applied strains are
symmetrical, the compaction bands in the models also are symmetrical.

When k= 0.5 (Figure 5b), the compaction band propagates horizontally and perpendicular to σ1, which
corresponds to straight T33 CBs (e.g., Figure 1a). When k= 2 (Figure 5d), the compaction band propagates
along 45° inclined directions. It may represent the shear-enhanced CBs that are inferred to form at 38–53°
to σ1 [Eichhubl et al., 2010]. The compaction band switches to another 45° inclined direction, when it reaches
the boundaries. Therefore, it shows a chevron pattern with sharp 90–100° corners and straight “limbs,”which
is comparable to the chevron T31 CBs (e.g., Figure 1a).
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When an intermediate aspect ratio k=1 is used, the compaction band may vary between wavy shape and
straight shape. In Figure 5c, the compaction band propagates along inclined directions at the model center
and then changes to the horizontal direction. The two horizontal compaction bands do not influence each
other and propagate by approximately 1.5 cm. Subsequently, the compaction band is changed into a wavy
shape (T32) that propagates along a 25° inclined direction; i.e., the failure angle (γ) between σ1 and the band
segment is 65°. From Figure 5b to Figure 5d, with the increasing k, the failure angle decreases from 90° to 45°.

Vertical stress-strain curves during the simulations are provided in Figure 5e. Although the boundary displa-
cements are very small in each compressive step, the forces on boundary elements jump when the model is
compressed. Due to the damping viscosity, the fluctuations of forces on internal elements are much smaller.
As a result, these boundary elements compact prior to the internal elements [Marketos and Bolton, 2009]. In
Figure 5e, the stress drops at points A and B correspond to the first and second compactions of boundary
elements, respectively. The critical stress for onset of the central compaction band is approximately 28MPa
in Figure 5e. The critical stress is within the range of maximum compressive stresses estimated by Eichhubl
et al. [2010] (20MPa) and Sternlof et al. [2005] (40MPa). It is smaller than the yielding stress of the model
(39.23MPa), as the stress concentrates around the central weak elements, which promotes the initiation of
compaction bands. Based on a structural-diagenetic reconstruction of paleofluid flow in the Aztec
Sandstone, Eichhubl et al. [2010] concluded that the compaction bands formed under an effective vertical
stress (i.e., minimum compressive stress) of 10MPa. In the simulations, the minimum compressive stress
(horizontal) is 9.4MPa when the compaction bands start to propagate.

3.3. Stress State and Force State of Band Tip During Compaction

Pure compaction bands (i.e., straight T33 CBs) have been interpreted by Sternlof et al. [2005] using an antic-
rack model [Fletcher and Pollard, 1981]. Compaction bands can be idealized as highly eccentric ellipsoidal
bodies and can be represented mechanically as Eshelby inclusions that generate near-tip compressive stress
concentrations [Sternlof et al., 2005]. Therefore, it is reasonable to postulate that the pure compaction bands
propagate perpendicular to the direction of local maximum compressive stress [Meng and Pollard, 2014].

The sum of Y components (vertical) of bond forces divided by the effective element area is defined as σyy of
an element. Figures 6a and 6b show σyy with k= 0.5 during propagation. Compaction bands in the figures are
outlined by thick dashed lines. When the central elements are compacted, the stress is redistributed to the
elements around them, which may be compacted subsequently. Therefore, the compaction band propagates
horizontally, perpendicular to σ1, which is consistent with the results predicted by the anticrack model.

Figure 5. (a) Interelement failure envelope when Ff = 2·FS0. Failure caps defined by the aspect ratios k= 0.5, 1, 2 are assigned
to models in Figures 5b–5d, respectively. (b–d) Simulation results when k= 0.5, 1, 2. When k is 0.5, the compaction band is
straight and perpendicular to σ1; when k is 2, the band alternates between two inclined directions and takes on a chevron
shape; when k is 1, the band varies between straight and wavy shapes. The failure angle (γ) between σ1 and band segment
decreases with increasing k from Figures 5b–5d. (e) Vertical stress versus strain curves of the three models.
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However, discrete element simulation is a dynamic process (step by step), and an element will be compacted
immediately when its force state exceeds the limit. Therefore, the concentration of stress in Figures 6a and 6b is
not as significant as that predicted by the anticrack model [Rudnicki, 2007], which is based on a continuum
mechanics formulation. Figures 6c and 6d show the stress distribution with k=2, when the compaction band
propagates along inclined directions. The stress distribution of Figure 6c is almost the same as that of Figure 6a
(with k=0.5), and the maximum σyy also occurs at elements adjacent to the band tip. As can be seen in
Figure 6d, however, compaction bands propagate along inclined direction. These results indicate that the
direction of compaction bands is not always determined by and perpendicular to σ1; it is also influenced by
the yielding cap of sandstone.

Propagation of compaction bands depends upon the failure process of the band tip elements. Elements
around the band tips in Figures 6a and 6c are drawn in Figures 6e and 6f, respectively. The elements marked
by dashed circles are compacted first when the compaction band propagates, and the compressive forces are
redistributed to surrounding elements A, B, and C. The critical force state may occur in bond AB when k=2 or
bond AC when k=0.5. The curves of force states of bonds AB and AC are illustrated in the FS–Fn graphs
Figures 6e and 6f, respectively. As boundary elements are compacted one by one before the propagation
of the central compaction band, force increases and drops within the range of the two vertical dashed lines.
The curves of force states in the two figures are very close to each other. However, the yielding cap is curved
toward the negative direction of the horizontal axis in Figure 6e (k=0.5), so the force state of bond AC
reaches the cap first. The yielding cap is almost vertical in Figure 6f (k= 2), so the force state of bond AB
reaches the cap first. Therefore, failure of elements may occur along different directions when the yielding
cap is different. Similarly, when a pore structure of porous sandstone collapses and is compacted, the sequen-
tial compaction may be perpendicular to or inclined to σ1, depending on the mechanical properties and
yielding caps of surrounding pore structures.

3.4. Transition Between Chevron, Wavy, and Straight CBs

In Figure 1a, the band type varies continually from chevron to wavy to straight CBs. Because the failure angle
of model compaction bands is controlled by the yielding cap of elements, it is inferred that the transition
of band shapes in outcrop is derived from the variation of yielding caps. To support this inference, the pro-
pagation of compaction bands in models with spatially variable yielding caps is simulated. In Figure 7a, the
aspect ratio of the yielding ellipse decreases from 2 at the center to 0.5 at the lateral sides. The models are

Figure 6. Stress component σyy as compaction bands propagate. Compaction bands are outlined by thick dashed lines.
(a and b) k = 0.5; (c and d) k = 2. (e and f) Variation of force states of bonds when k = 0.5 and k = 2. Inset is the dashed region
of Figures 6a and 6c, respectively. Curves of force states are almost the same in the two graphs. However, yielding failure
may occur between bonds AC or AB when the shape of the yielding cap is different, which results in different directions of
compaction band propagation.
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compressed step by step according to
the process introduced in section 3.1.
The compaction band first propagates
along the 45° direction in the central
area (with k= 2), which is the same as
Figure 5d. In the region of k= 1, the fail-
ure angle between band segment and
σ1 increases a bit to approximately 55°.
Finally, when k= 0.5, the compaction
band propagates along the model
boundaries and perpendicular to σ1.
The simulation result is comparable to
the variation of wiggly CBs in Figure 1a.

In Figure 7b, the failure angle (γ)
decreases from 90° at the central area
where k= 0.5, reduces to 65° when
k= 1, and to 40° when k= 2. The com-
paction band varies from a planar shape
at the center to a wiggly shape at the
lateral sides. Therefore, the failure angle

and the shape of the compaction bands depend on the yielding caps of the elements. We suggest that
variations of yielding cap also occur in the Aztec sandstone, which results in the continuous transition
from chevron CB to straight CB as shown in Figure 1a. In the companion paper [Liu et al., 2015], thin section
analysis of the rock samples drilled at the site of Figure 1a also shows that the host rock of the straight CB
have greater porosity and better sorting than that of the chevron CB. These results and the correlations
are discussed in section 4.1.

3.5. Growth of Straight CB (T33) and Wavy CB (T32)

In the simulations of the small model, the compaction band reflects from the boundary to form a chevron or
wavy pattern (Figures 5c and 5d). However, there are no such boundaries that limit the propagation of the
CBs in real sandstone (e.g., Figure 1a). It is possible that the shear-enhanced CBs switch their directions when
they propagate a certain distance. Therefore, a larger model is used to investigate the propagation and thick-
ening process of compaction bands. The setup of the model is the same as that of the model of Figure 4, but
the size is doubled. Similar to the smaller model, three seed elements in the model center are assigned a 90%
lesser failure force. The model is compressed step by step, and the horizontal displacement is 30% of the
vertical displacement in each compressive step. Numerical simulations with two values, k= 0.5 and k= 2, were
carried out, and the results are given in Figures 8a–8c and 8d–8f, respectively.

The straight T33 CB propagates perpendicular to σ1 when k=0.5. Figure 8a shows σyy of themodel when the com-
paction band has propagated 1.7 cm from the central seed. The compaction band is outlined by thick dashed line.
The elements in themodel can be compacted by two times. As shown in Figure 8a (also Figure 8d), the stresses on
the compacted elements are uneven. With increasing compression, the compacted elements and surrounding
original elements may be compacted due to the concentrations of bond forces. In Figure 8b, elements are
compacted beside the compaction band, which gets thicker gradually (Figure 8c). Furthermore, secondary
compactions occur in the CBs (Figures 8c and 8f), reducing the “porosity” of CBs.

When k= 2 (Figures 8d–8f), the compaction band propagates from the central seed, along a 45° direction first,
and then it gradually changes to another inclined direction as it propagates approximately 1.5 cm (Figure 8d).
The CB continues propagating for approximately 2.5 cm as the band tip rotates gradually to another inclined
direction. The geometry of the CB is very similar to the wavy T32 CBs observed in field (e.g., Figure 1b),
which have straight limbs and somewhat rounded hinge. Furthermore, the compaction band may propa-
gate along two inclined directions when it starts from the seed, which is similar to the result shown in
Figure 5d. Therefore, the two directions are the predominant failure directions of bands when k= 2.
However, in this simulation, the compaction band switches direction when it propagates by several centi-
meters and does not reach the boundaries. We assume that the force states (also stress) of tip elements

Figure 7. (a) Failure angle (γ) between σ1 and band segment increases
from 45° to 90°, where the aspect ratio (k) of yielding ellipse decreases
from 2 at the center to 0.5 toward the lateral sides. The model compaction
bands vary from chevron shape to straight, which is similar to the transition
of band shape in Figure 1a. (b) The compaction band varies from straight to
wiggly shape, when the spatial variation of k is reversed.
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vary when the inclined band propagates. The variation of force states exceeds a limit when the length of
band segment reaches a critical value, and the band direction alternates. Such transition occurs every sev-
eral centimeters, and as a result, wiggly CBs alternate direction between two predominant inclined direc-
tions and show chevron or wavy shapes.

4. Discussion: Factors Influencing Wiggly Band Geometry
4.1. Yielding Cap and Failure Angle

Studies of rock samples [Schultz et al., 2010; Fossen et al., 2011; Cheung et al., 2012] and laboratory experi-
ments on porous rock [Klein et al., 2001; Baud et al., 2004] have shown that grain sorting and porosity are
key petrophysical attributes that can control the formation of compaction bands in porous sandstone. In
the companion paper [Liu et al., 2015], petrographic analyses of thin section images indicate the sorting
degree and porosity of the host rock increase from chevron (T31) to wavy (T32) to straight CBs (T33). The
failure angles of band segments of the three band types are approximately 90°, 65°, and 45° (e.g.,
Figure 1a), respectively. Therefore, it is inferred that the variation of band shape is due to the increasing
failure angle of sandstone, which is related to the increasing sorting degree and porosity.

In the numerical simulations, compaction bands show a zigzag geometry that is similar to the wiggly CBs
documented in outcrop. When the aspect ratio of yielding ellipse increases from 0.5 to 1 and 2, the failure
angle of compaction bands decreases from approximately 90° to 65° and 45° (Figures 5b–5d), which is com-
parable to the straight CBs, wavy CBs, and chevron CBs. Particularly, when k varies from 2 at the center to 0.5
at the lateral sides of the model, the variation of chevron CBs to straight CBs is simulated. Therefore, we infer
that porosity and grain sorting affect the mechanical properties of rock (e.g., effecting the yielding cap) and
lead to different failure angles of band segments and different patterns of wiggly CBs. In addition, other
microparameters, e.g., grain size, cementation and yielding stress also may have effects on the yielding
cap of sandstone [see review ofWong and Baud, 2012]. Interelement mechanical parameters can be adjusted
to investigate their influences on the failure angle and the shape of compaction bands.

4.2. Critical Yielding Stress

The critical yielding stress is primarily determined by the failure force of elements in this study. To investigate
the influences of yielding stress on the formation of wiggly CBs, we double the failure force Ff = 4 · FS0. In
keeping with the greater failure force, the compressive step is doubled in these simulations, while other
parameters of the simulations are the same as the original model. The results for models with the aspect
ratios, 0.5, 1, and 2, are given in Figures 9b–9d. When k= 0.5, the compaction band propagates approximately
70° to σ1 first and perpendicular to σ1 later. When k= 1 and 2, the compaction bands are wiggly at approxi-
mately 45° and 40° to σ1. The failure angle also decreases with increasing k, but the values are less than those
of the original model (Figures 5b–5d). Apparently, the model bands tend to be more inclined to σ1 when the
failure force (i.e., yielding stress) increases.

Figure 8. Simulation results of a model with size 9.6 cm× 2.35 cm. Three weak elements in the model center are the “seed”
for the model compaction bands. (a–c) Growth of CB band when k = 0.5. (d–f) Growth of a wavy CB when k = 2. Figures 8a
and 8d show the distribution of σyy; CBs are outlined by dashed lines.
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Chevron CBs (T31) and straight CBs (T33) have different microstructures in the host rock. Navajo Sandstone
in the Buckskin Gulch site [Fossen et al., 2011] shows that pure CBs (i.e., T33 CBs) only occur in the lower and
most coarse grained and well-sorted parts of grain flow units. In the companion paper, petrographic
analyses show that the host rock porosity of chevron CBs is less than that of straight CBs [Liu et al.,
2015]. Because the yielding stress generally increases with decreasing porosity [Zhang et al., 1990; Wong
and Baud, 2012], sandstone with lesser porosity generally has a greater yielding stress [Schultz et al.,
2010]. The simulation results are consistent with the fact that straight T33 CBs form in high-porosity sand-
stone with lesser yielding stress, and chevron T33 CBs form in relative low porosity sandstone with greater
yielding stress.

Curves of vertical stresses during compressions are shown in Figure 9e. The critical stress for the onset of
central compaction band is approximately 63MPa. The curves of different aspect ratios (k) are almost the same,
although the shapes of the compaction bands are quite different. This indicates that the onset of collapse is
determined by Ff, but it is not influenced significantly by k. The minimum compressive stress (horizontal) is
approximately 20MPa when the compaction bands start to propagate.

4.3. Cement Strength

The cementation of sandstone is represented in these models by interelement bonds, and the cement
strength is determined by interelement breaking force (Fb). To investigate the influences of cement
strength on the formation of compaction bands, numerical models with twice Fb are investigated.
Failure envelopes for the models, and the results are given in Figures 10a–10c. When k= 0.5, the straight
CB is almost the same as the result of the original model (Figure 5b). However, when k= 2, the compaction
band still is perpendicular to σ1, while the CB is 45° inclined to σ1 in Figure 5d (with original Fb). The results
indicate that a higher strength of cement restrains chevron CBs (shear enhanced) and promotes straight
CBs (pure compacted).

Microscopic observations have shown that shear fractures typically do not propagate in their own plane,
and the eventual failure of rock samples occurs by linkage of tensile microcracks to form amacroshear fault
[Horii and Nemat-Nasser, 1985; Moore and Lockner, 1995]. Discrete element numerical simulations have shown
that tensile microcracks and grain crushing were pervasive inside the shear band [Wang et al., 2008,
Figure 6b]. Boutt and McPherson [2002] also observed that models with a high ratio of shear to normal bond
strength produce a well-defined shear plane. In these numerical simulations, most opening microcracks are
associated with segments of wiggly CBs (shear enhanced). Therefore, we suggest that tensile microcracks also
play an important role in the formation of shear-enhanced compaction bands. Since the greater strength of

Figure 9. (a) Interelement failure envelopes when failure force Ff = 4·FS0. (b–d) Simulation results when k = 0.5, 1, 2. When
k increases, the failure angle of band segment decreases, and the compaction band tends to be more wiggly. (e) Vertical
stress versus strain curves of the three models.
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cement restrains the onset of tensile microcracks, the compaction bands tend to be perpendicular to σ1 when a
greater Fb is used.

Figures 10e and 10f show the simulation results with double failure forces (Ff) and double breaking
forces (Fb). The failure envelopes of the two models are given in Figure 10d. When k = 0.5, the compac-
tion bands in Figure 10c are composed of segments of straight CBs and inclined shear-enhanced CBs,
which have failure angles of 90° and 60°, respectively. When k = 2 (Figure 10f), the compaction bands
show a wavy shape with a lower mean failure angle of approximately 55°. In comparison with
Figures 9b and 9d (with original Fb), the CBs have greater failure angles, but the failure angles of the
CBs are less than the straight T33 CBs in Figures 10b and 10c (with original Ff). The results indicate the
failure angle of CBs is controlled by Ff and Fb, i.e., yielding stress and cement strength of sandstone.
Greater Ff promotes chevron T31 CBs with lower failure angles, and greater Fb promotes straight T33
CBs with greater failure angles. It is inferred, therefore, that the ratio of interelement failure force to
breaking force influences the shape of wiggly CBs. In the original model, the ratio of Fb:FS0:Ff is about
1:4.1:8.2. The three interelement parameters correspond to three macromechanical properties of the
original model, tensile strength (5.50MPa), shear strength (24.49MPa), and yielding stress (39.23MPa);
the ratio of the three properties is 1:4.5:7.1.

4.4. Stress and Heterogeneity

The numerical simulations indicate that the failure envelope has an important impact on the formation of
wiggly CBs. However, we do not assume CB geometry is determined only by the mechanical properties of
sandstone. Numerical simulations with different lateral stresses (range from 8MPa to 70MPa) have been
investigated byWang et al. [2008]. Their simulation results show that the damage distribution is more diffuse
and delocalized at higher lateral stresses. In the numerical simulations of the current study, the ratio of the
maximum compressive stress (e.g., σ1 = 28 MPa) to minimum principle stress (e.g., σ2 = 9.4MPa) is approxi-
mately 3:1. Variation of lateral stress (σ2) and the ratio of σ1 to σ2 may influence compaction band geometry,
and this will be analyzed in future work.

Numerical simulations in previous studies [Katsman et al., 2005; Wang et al., 2008] indicate that the discrete
compaction bands are promoted in a relatively homogeneous granular aggregate, and diffuse bands and
distributed cataclastic flow usually form in a more heterogeneous model. Therefore, the formation of
compaction bands also is influenced by the distribution of element mechanical properties. In this study, all
the elements (except the central elements) are assigned the same mechanical properties, and planar

Figure 10. (a) Failure envelopes of elements in Figures 10b and 10c. (b and c) Simulation results of models with double Fb.
Compaction bands are perpendicular to σ1 (γ = 90°), when k = 0.5 and k = 2. Therefore, greater Fb promotes straight T33 CBs.
(d) Failure envelopes of elements in Figures 10e and 10f. (e and f) Compaction bands have lesser γ, when both Fb and Ff of
model elements are doubled. Therefore, greater Ff promotes chevron T31 CBs and wavy T32 CBs.
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compaction bands always form in the simulations. It is inferred that heterogeneity in the model may result in
diffuse bands and distributed cataclastic flow, but this requires further modeling, data gathering, and thin
section analyses that are beyond the scope of this paper.

5. Conclusions

Wiggly compaction bands (T3) formed in porous sandstone may vary from chevron shape (T31) to wavy
shape (T32) to nearly straight (T33). In this study, an enhanced discrete element method is used to investigate
the mechanisms of formation of wiggly CBs in porous sandstone. Simulation results for the original models
show that compaction bands vary from straight to chevron shape when the aspect ratio (k) of the yielding
ellipse increases from 0.5 to 2. This shape variation corresponds to a decrease of failure angle from approxi-
mately 90° to 45°. Analysis of force states adjacent to tip elements show that the different failure angles are
due to different yielding caps. When k is 0.5 and 2, sequential compaction occurs along the horizontal direc-
tion and inclined direction, respectively. Similarly, when a pore structure of porous sandstone is compacted,
the sequential compaction may be perpendicular to or inclined to σ1, depending on the yielding caps of the
surrounding pore structures. As host rock porosity and sorting degree of chevron CBs is lower than that of
straight CBs [Liu et al., 2015], we infer that the petrophysical attributes influence the mechanical properties
of rock (e.g., yielding cap) and result in different failure angles of band segments and different patterns of
wiggly CBs.

Propagation of compaction bands in the larger models provides important clues for the development of CBs.
With increasing compressive strain, stresses concentrate on compacted elements and adjacent elements,
which result in secondary compaction and thickening of CBs. When k=2, the compaction bands alternate
direction when they propagate by approximately 3 cm, almost the same as the wavy CBs observed in the field
[Liu et al., 2015]. Apparently, the variation of force states of tip elements exceeds a limit when the band
segment propagates by several centimeters. As a result, the band direction alternates between two predomi-
nant inclined directions and shows a chevron or wavy shape.

The simulations highlight the influences of critical yielding stress and cement strength on the formation of
wiggly CBs. A greater critical yielding stress promotes chevron CBs (shear-enhanced), and a greater strength
of cement promotes straight CBs (pure compacted). Thus, the ratio of cement strength to critical yielding
stress provides a quantitative rationale for the different shapes of wiggly CBs. Combined with the petro-
graphic analysis introduced in the companion paper [Liu et al., 2015], we conclude that the patterns of wiggly
CBs are controlled by the mechanical properties of sandstone, in particular, the shape of the yielding cap,
the critical yielding stress, and the cement strength. These mechanical properties are mainly determined
by petrophysical attributes, e.g., grain sorting, porosity, and cementation.

Appendix A

Interelement normal stiffness (Kn), shear stiffness (Ks), breaking force (Fb), initial shear resistance (FS0), and
coefficient of friction (μp) can be defined by five mechanical properties of sandstone, including Young’s
modulus (E), Poisson’s ratio (v), tensile strength (Tu), compressive strength (Cu), and coefficient of intrinsic
friction (μi):
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