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[1] Analytical solutions of elastic properties and failure modes of a two-dimensional close-
packed discrete element model are proposed. Based on the assumption of small
deformation, the conversion formulas between five inter-particle parameters of the lattice
model and rock mechanical properties were derived. Using the formulas, the inter-particle
parameters can be determined by Young’s modulus (E), Poisson’s ratio (v), tensile strength
(Tu), compressive strength (Cu), and coefficient of intrinsic friction (mi). The lattice defined
by the parameters simulates the elastic and failure behaviors of rocks and crystals and
therefore can be used to investigate the initiation and development of geological structures
quantitatively. Furthermore, the solutions also provide a theoretical basis for the calibration
of parameters of random discrete assemblies. The model of quartz was used as an example
to validate the formulas and test the errors. The simulated results show that E and v
converge to theoretical values when particle number increases. These elastic properties are
almost constant when the magnitude of strain is lower than 10�3. The simulated Tu and Cu

of a single three-element unit are also consistent with the formulas. However, due to the
boundary effects and stress concentrations, Tu and Cu of lattices with multiple units are
lower than the values predicted by the formulas. Therefore, greater Tu and Cu can be used
in the formulas to counteract this effect. The model is applicable to the simulation of
complicated structures that involve deformation and failure at different scales.

Citation: Liu, C., D. D. Pollard, and B. Shi (2013), Analytical solutions and numerical tests of elastic and failure behaviors
of close-packed lattice for brittle rocks and crystals, J. Geophys. Res. Solid Earth, 118, 71–82, doi: 10.1029/2012JB009615.

1. Introduction

[2] The discrete element method (DEM) [Mora and Place,
1993, 1994; Place et al., 2002] is based on molecular dy-
namics and was first developed in the fields of physics and
fluid dynamics [Hoover et al., 1974]. The method has been
demonstrated to be a powerful numerical tool since Cundall
and Strack [1979] introduced it to study the behavior of granu-
lar assemblies. In the method, the granular assemblies are made
up of a series of soft particles, which obey Newton’s equations
of motion. The mechanical, physical and chemical behaviors
can be simulated by investigating the movement of the discrete
assemblies. The method has been used to simulate the beha-
viors of granular materials [Kuhn, 1999; Morgan and
Boettcher, 1999; Kuhn and Bagi, 2004; Ergenzinger et al.,
2011]. Furthermore, it is an effective way to validate the predic-
tions of continuum mechanics [Wensrich and Stratton, 2011]
and can be combined with traditional continuummethods, such
as FEM [Nitka et al., 2011].

[3] Most media are discontinuous at some level of
observation, where the continuum assumptions cease to
apply [Griffith, 1921]. Discontinuities can be pre-existing,
such as bedding planes, lithologic interfaces, and flaws, or
they can form during tectonic events, such as faulting and
fracturing. For problems with significant deformation
and breakage, the DEM is more convenient and powerful,
since it permits large relative motion inside the model
and dynamic evolution [Hazzard et al., 2000; Boutt and
McPherson, 2002] and does not require re-meshing, for
example, as finite element method [Tradegard et al., 1998;
Mei et al., 1999; Paluszny and Matthai, 2009]. Therefore,
the DEM has been widely used in the simulation and
interpretation of various geological structures that involve
breakage and discontinuities, such as deformation bands
[Antonellini and Pollard, 1995; Wang et al., 2008], the reac-
tivation of basement faults [Saltzer and Pollard, 1992],
faulting over active salt diapir [Yin et al., 2009], detachment
folding [Hardy and Finch, 2005], growth fault bend folding
[Benesh et al., 2007], fault propagation folding [Finch et al.,
2003; Hardy and Finch, 2006, 2007], and syn-tectonic
sedimentation [Carmona et al., 2010].
[4] A major issue with the application of the DEM for

geological investigations is the determination of the model
parameters, such as stiffness and inter-particle breaking
strain [Mora and Place, 1994; Finch et al., 2003]. In some
previous studies, the physical properties (mass, density)
and mechanical parameters (stiffness, breaking force) of
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particles of the discrete element model were usually given in
non-dimensionalized model units and were set to unity
[Mora and Place, 1994; Yin et al., 2009]. However, the
results of such numerical simulations are qualitative, lacking
clues about the mechanical properties of the model and the
form of structures. Therefore, in order to quantify the influence
of rock mechanical properties on the development of struc-
tures, it is necessary to define the model parameters
according to the real rock properties. Then, by varying
the parameters and running a simulation to reproduce the
geological phenomenon, geologists can explore the rela-
tionship between the rock properties and the development
of structures.
[5] As for an assemblage of random discrete particles with

polydisperse size distribution and/or random packing, a gen-
eral method is to do a simulation and determine the effective
mechanical properties such as Poisson’s ratio, Young’s
modulus, uniaxial compressive strength, etc. [Boutt and
McPherson, 2002; Potyondy and Cundall, 2004; Hardy
et al., 2007; Roul et al., 2011]. The modeling method
relies on calibration processes to determine the correct
inter-particle parameters. Via the calibration operations,
Kazerani and Zhao [2010] demonstrated that macro-
mechanical properties of material (i.e. Young’s modulus,
Poisson’s ratio, internal friction angle, internal cohesion, and
tensile strength) directly originate from and therefore are related
to micro inter-particle parameters (i.e., normal and shear stiff-
ness, coefficient of friction, cohesion, and tensile strength).
Tavarez and Plesha [2007] investigate the Young’s modulus
and Poisson’s ratio of close-packed discrete element model.
The close-packed model has analytical elastic solutions
[Griffiths and Mustoe, 2001], which can be verified by numer-
ical tests. However, the relationships between thematerial prop-
erties and inter-particle parameters are still not clear. And it is
difficult to define an assemblage with specified mechanical
properties of rocks, such as compressive strength and

coefficient of intrinsic friction, and perform similar failure beha-
viors as a real material.
[6] The elastic properties and failure modes of a regular

close-packed discrete element model is investigated in this
study. In the model, rock is represented by bonded particles,
of which the inter-particle behaviors are defined by five para-
meters: normal stiffness (Kn), shear stiffness (Ks), breaking dis-
placement (Xb), shear resistance (Fs0), and coefficient of friction
(mp). Based on the assumption of small deformation, a basic
unit with three particles was used to explore the dependence
of rock mechanical properties on the inter-particle parameters.
The conversion formulas between the five inter-particle para-
meters and fivemechanical properties of the lattice was derived,
including Young’s modulus (E), Poisson’s ratio (v), tensile
strength (Tu), compressive strength (Cu), and coefficient of in-
trinsic friction (mi). Then, the model of a quartz grain was used
as an example to validate the formulas. A series of numerical
tests were conducted to investigate the error and convergence
of the model during elastic deformation and brittle failure.
Finally, the application of the model is discussed.

2. Discrete Element Model

2.1. The Basic Lattice Model

[7] The discrete element model used here is based on the
lattice model, which was used to simulate the dynamical
processes associated with earthquakes [Mora and Place,
1993, 1994]. Recently, the model was applied to investigate
the kinematic characteristics of structures [Hardy and Finch,
2006; Yin et al., 2009]. The discontinuous methods use a
series of elastic particles (i.e., two-dimensional disks) which
obey Newton’s equations of motion. The particles of the
model are bonded by breakable elastic springs, and the force
can occur only at point contacts between neighboring particles
(Figures 1a and 1b).

Figure 1. (a) The two-dimensional close-packed lattice. (b) A central particle is bonded by six neighbor-
ing particles, which interact through a spring force. (c) The spring between two particles will break when
the normal relative displacement Xn exceeds the breaking displacement Xb, and the tensile force will not
exist between them. (d) Similarly, two particles are bonded by breakable elastic spring along the tangential
direction to simulate the shear deformation and shear force (see text).
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[8] In the model discussed in this paper, particles with
the same radius are close packed (Figure 1a), that is, the
hexagonal lattice. The particles interact through a “repulsive-
attractive” spring force in which the normal force between
two particles, Fn, is given by

Fn ¼ KnXn (1)

where Kn is the normal spring stiffness of the bond; Xn is the
normal relative displacement. As shown in Figure 1c, Xn equals
the current inter-particle separation (r) minus the particle diam-
eter (d). Particles are bonded to their neighbors, and experience
an attractive or repulsive force, untilXn between the particle pair
exceeds the breaking displacement Xb (Figure 1c). The maxi-
mum inter-particle normal force (Fnmax) is

Fnmax ¼ KnXb intact bond (2)

[9] Then, the bond is broken in opening mode and the ten-
sile force ceases to exist between them.
[10] However, the repulsive force still acts between the

two particles when they return to a compressive contact
(Figure 1c):

Fn ¼ KnXn Xn < 0; broken bond (3)

2.2. Shear Force and Shear Resistance

[11] In addition to the normal force (Fn), the shear (tan-
gential) force, FS, is also considered [Cundall and Strack,
1979; Place and Mora, 1999; Hardy et al., 2009]. As shown
in Figure 1d, when two particle surfaces are in contact and
slipping past one another, a dynamic frictional force opposes
the direction of slip. It is assumed that the two particles are
also bonded by breakable elastic springs along the tangential
direction, and the force (FS) of the shear spring is deter-
mined by

FS ¼ KsXs (4)

where Ks is the shear stiffness and Xs is the tangential
relative displacement between the two particles. For an
intact bond, the maximum shear force (FSmax) allowed by
Coulomb friction is

FSmax ¼ FS0 � mpFn intact bond (5)

where FS0 is the inter-particle shear resistance, mp is the
inter-particle coefficient of friction, and Fn is the normal force
(compressive force is negative). The intact bond between two
particles will break when the external force exceeds the
maximum shear force determined by equation (5). Then, the
intact bond breaks and the inter-particle shear resistance
(FS0) will not exist between them. The magnitude of the shear
force (FS) is limited to be less than or equal to the maximum
shear force of the broken bond:

FSmax ¼ �mpFn broken bond (6a)

FS ¼ FSmax if FS > FSmaxð Þ (6b)

[12] In the case of broken bond, two particles begin
slipping when the magnitude of external force exceeds the

maximum shear force determined by equation (6a); when
two particles separate from each other (Xn> 0), the normal
force and shear force between the particles are set to zero.

2.3. Numerical Solution

[13] In numerical simulations, an artificial viscosity (Fv) is
added to damp the reflected waves from the boundary of the
particle and to avoid buildup of kinetic energy in the closed
system [Mora and Place, 1993, 1994; Place et al., 2002;
Finch et al., 2003]. The viscous force is proportional to the
particle velocities and is given by

Fv ¼ ���x’ (7)

where � is the artificial viscosity and x0 is the particle
velocity.
[14] The resultant force acting on a particle is the summa-

tion of all the forces on each bond that links the particle to
its neighbors and the viscous force. The dynamic evolution
of an assemblage can be modeled and observed by a time-
stepping algorithm [Cundall and Strack, 1979; Potyondy
and Cundall, 2004]. Assuming that the motion of the parti-
cles is linear during a very small time step, then the resultant
force, acceleration, velocity, and displacement of the parti-
cles can be calculated during the time step [Mora and Place,
1993, 1994]. The particles are advanced to their new positions
by integrating their equations of motion using Newtonian
physics. The details about the numerical simulations will be
introduced in section 5.

3. Elastic Properties of Close-Packed Lattice

[15] The close-packed lattice (regular hexagonal packing)
shown in Figure 1a is composed of particles with identical
size and inter-particle mechanical parameters. The mechani-
cal properties of the model depend on the mechanical para-
meters of the particles, when the layout of the particles is
determined. The discrete element model introduced in section
2 involves the following five independent inter-particle para-
meters: normal stiffness (Kn), shear stiffness (Ks), breaking
displacement (Xb), shear resistant (Fs0), and coefficient of
friction (mp). In this section, the parameters are used to define
the mechanical properties of the close-packed lattice, such as
Young’s modulus (E), shear modulus (G), and Poisson’s ratio
(v), etc.

3.1. Deformation of Basic Triangular Unit

[16] The basic triangular unit of the close-packed lattice
shown in Figure 2 is used to investigate the mechanical
properties of the lattice on the basis of the small deformation
assumption, in which the displacement of particles is very
small, so the deformation of the unit is assumed to be linear.
In the unit, the three particles are bonded to each other by
three intact bonds (bonds 1–3). Since all the particles have
the same diameter (d), the triangle ABC is an equilateral
triangle. The y coordinate of particles 2 and 3 is fixed. An
external force, Fy, acts on particle 1, which moves upward
by a very small displacement dy. The angle A0BC and angle
A0CB are still 60�. Since the model is symmetrical around
the y axis, the external forces acting on particles 2 and 3
(Fy2 and Fy3 in Figure 2) equals 0.5Fy.
[17] Equilibrium condition of particle 1 requires that the

normal force (Fn1) between particles 1 and 2 is tensile

LIU ET AL.: ANALYTICAL SOLUTIONS OF DEM PROPERTIES

73



(positive) and consequently the normal relative displacement
(Xn1) is positive. Similarly, particles 2 and 3 move toward
the point O, and the normal relative displacement between
them is negative. According to equations (1) and (4), the
normal and shear forces between particles can be defined
as follows (physical equations):

Fn1 ¼ Kn�Xn1

FS1 ¼ Ks�Xs1

Fn2 ¼ Kn�Xn2

8<
: (8)

where Fn1 and FS1 are, respectively, the normal and shear
forces between particles 1 and 2 (bond 1), Fn2 is the normal
force between particles 2 and 3 (bond 2), and the right sides
of the equations are the corresponding stiffness and relative
displacements. The forces acting on particles 1 and 2 are
shown in Figure 2. The balance equations of particle 1 along
y axis and particle 2 along x axis are

Fy ¼ ffiffiffi
3

p �Fn1 þ FS1

�Fn2 ¼ 1=2�Fn1 �
ffiffiffi
3

p
=2�FS1

�
(9)

[18] The normal and shear displacements between parti-
cles 1 and 2 are related to dy and Xn2 as (geometric
equations)

Xn1 ¼
ffiffiffi
3

p
=2�dyþ 1=4�Xn2

Xs1 ¼ 1=2�dy� ffiffiffi
3

p
=4�Xn2

�
(10)

[19] In equations (8)–(10), Fy, Kn, and Ks are known.
There are seven unknown variables in the seven equations.
Therefore, the equations can be solved, and dy, Xn1, Xs1,
and Xn2 are

dy ¼ 3Kn þ Ks

4Kn Kn þ Ksð Þ �Fy (11a)

Xn1 ¼
ffiffiffi
3

p
2Kn þ Ksð Þ

6Kn Kn þ Ksð Þ �Fy (11b)

Xs1 ¼ 1

2 Kn þ Ksð Þ �Fy (11c)

Xn2 ¼ �
ffiffiffi
3

p
Kn � Ksð Þ

6Kn Kn þ Ksð Þ �Fy (11d)

[20] The equations will be used to derive the elastic prop-
erties and strengths of the unit in the following sections.

3.2. Young’s Modulus, Shear Modulus, and Poisson’s
Ratio

[21] In the basic triangle unit, the normal stresses along the x
direction (sxx) and y direction (syy) are (tensile stress is positive)

sxx ¼ 0
syy ¼ Fy=d

�
(12)

where Fy is the vertical force acting on the triangle unit; d is
the particle diameter. With the equations and equations (11a)
and (11d), the normal strains of the unit along x direction
(exx) and y direction (eyy) are given as

exx ¼ Xn2

lBC
¼ �

ffiffiffi
3

p
Kn � Ksð Þ

6Kn Kn þ Ksð Þ �syy (13a)

eyy ¼ dy

lAO
¼

ffiffiffi
3

p
3Kn þ Ksð Þ

6Kn Kn þ Ksð Þ �syy (13b)

where lBC and lAO are the lengths of segments BC and AO
(Figure 2), respectively. The model is two dimensional,
and the normal in-plane stresses in the x and y directions
are [Pollard and Fletcher, 2005, p. 299]

sxx ¼ 2Gþ lð Þexx þ leyy
syy ¼ lexx þ 2Gþ lð Þeyy

�
(14)

where G is the shear modulus; l is Lame’s constant. The
stress-strain relations in equation (14) assume conditions of
plane strain (ezz = 0). Substituting equations (12) and
(13a)–(13b) into equation (14), the shear modulus and
Lame’s constant are

G ¼
ffiffiffi
3

p
=4� Kn þ Ksð Þ (15)

l ¼
ffiffiffi
3

p
=4� Kn � Ksð Þ (16)

[22] Then, the Young’s modulus (E) and Poisson’s ratio (v)
can be derived from the shear modulus and Lame’s constant:

E ¼
ffiffiffi
3

p
Kn þ Ksð Þ� 5Kn � Ksð Þ= 8Knð Þ (17)

v ¼ 1=4� 1� Ks=Knð Þ (18)

[23] Dividing equations (15)–(17) by Kn, the right sides of
the expressions are only determined by the ratio of shear
stiffness to normal stiffness (g). The results and Poisson’s
ratio are plotted versus g in Figure 3. If Kn is assumed to be
one unit, the figure indicates that the Young’s modulus (E)
and shear modulus (G) increase with increasing Ks, while
the Lame’s constant (l) and Poisson’s ratio decreases linearly
with increasing Ks. The theoretical range of Poisson’s ratio in
the generalized Hooke’s law for an isotropic continuum is
from �1.0 to 0.5 [Lakes, 1987; Bathurst and Rothenburg,

Figure 2. A vertical force Fy acts on a three-particle unit.
The deformation of the basic triangular unit is used to inves-
tigate the mechanical properties of the lattice model.

LIU ET AL.: ANALYTICAL SOLUTIONS OF DEM PROPERTIES

74



1988]. Since the normal stiffness (Kn) and shear stiffness (Ks)
cannot be negative, the maximum Poisson’s ratio of the close-
packed lattice is 0.25 when g is 0. When g =1, this corresponds
to a material with Poisson’s ratio equal zero. When g> 1,
Poisson’s ratio is negative, which implies the material has
the unusual property of narrowing when compressed. This
state of affairs occurs when the tangential interaction is
stiffer than the normal interaction [Gaspar, 2010].
[24] Equations (17) and (18) are consistent with the

simulated results of previous works [Hazzard et la., 2000;
Boutt and McPherson, 2002] that Young’s modulus increases
with increasing normal stiffness and the ratio of the shear to nor-
mal stiffness (g) influences the Poisson’s ratio. The Poisson’s
ratio of rocks and crystals is generally between 0.1 and 0.25;
as a result, the corresponding range of g is 0–0.6. However,
for assemblies of random discrete particles, the Poisson’s
ratio versus g curve is controlled by the compactness of the
assemblage, reflected in the porosity and coordination number
[Kruyt and Rothenburg, 2004]. The Ks/Kn ratio could be
greater than 0.6. For example, Ks =Kn was used in the simula-
tion of the micro-mechanics of compaction localization in a
granular rock [Wang et al., 2008].
[25] In conclusion, the macro-elastic properties of

the close-packed model are determined by the normal stiff-
ness (Kn) and shear stiffness (Ks) of the particles [Hazzard
et al., 2000]. Specifically, if the shear stiffness is not consid-
ered (Ks = 0), the particular values of the solutions coincide
with the results of previous studies [Hoover, 1974; Mora
and Place, 1993]. Using a different approach based on strain
energy density, Griffiths and Mustore [2001] also obtained
similar results to equations (17) and (18). However, the
new method based on small deformation has inherent advan-
tages in the investigation of the failure modes of the lattice,
which will be introduced in the following section.

4. Failure Modes of Close-Packed Lattice

[26] According to equations (2) and (5), an intact bond can
be broken in opening mode or sliding mode, when the
normal force or shear force exceeds the limits. Failure in
tension and in shear may be defined using plots of a failure

surface in coordinates of shear force (FS) versus normal
force (Fn). The inter-particle failure envelope determined
by the equations is illustrated in Figure 4. In the gray region,
the force states are impossible because of failure. The white
region under the inter-particle failure envelope corresponds
to possible force state. The inter-particle breaking displace-
ment is very small, and deformation of the lattice is linear.
Therefore, the force state path of an intact bond is generally
a straight line, which starts at the origin and ends at the inter-
particle failure envelope, where the intact bond breaks. As
shown in Figure 4, bonds may break at points P1 and P2 in
opening mode and sliding mode, respectively. The inter-
particle failure envelope can be used to derive the tensile
strength and compressive strength of the lattice model.

4.1. Tensile Strength

[27] Extension fractures typically appear when rock fails
under uniaxial tension. The main characteristic of this type
of fracture is a clean separation of the two halves of the sam-
ple, with no tangential offset between the two surfaces. In
the triangle unit of Figure 2, with increasing tensile force
Fy, the normal force (Fn1) and shear force (FS1) of bond 1
increase. The corresponding force state point (Figure 4)
moves from point O, along the segment OP1, until reaching
point P1, where the bond breaks in opening mode. The
tensile strength of the model (Tu) is defined as

T ¼u
Fyb
d

(19)

where Fyb is the vertical force when bond 1 breaks. Substi-
tuting equation (11b) into this equation gives the following
expression for Tu:

T ¼u
2

ffiffiffi
3

p
Kn Kn þ Ksð Þ
2Kn þ Ks

�Xb

d
(20)

where Xb is the inter-particle breaking displacement. Substi-
tuting the equation into equation (13b) (syy =Tu), the tensile
breaking strain (et) can be expressed as

Figure 3. Relationships between elastic properties (G, l, E,
and v) of close-packed model and the normal stiffness (Kn)
and shear stiffness (Ks).

Figure 4. Shear-normal force space of a bond. Force state
path of a bond starts at the origin O, along a straight line,
until reaching the inter-particle failure envelope, where the
bond breaks in opening mode (P1) or sliding mode (P2).
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e ¼t
3Kn þ Ks

2Kn þ Ks
�Xb

d
(21)

[28] The tensile breaking strain is related to the inter-particle
breaking displacement (Xb). Mora and Place [1994] tested the
parameters and showed that breaking strains for most materials
were typically much less than 0.11. Finch et al. [2003] investi-
gated the effect of the breaking separation and showed that
large values of the breaking strain are associated with “strong”
materials, which fail by localized faulting, whereas low values
are associated with “weak”materials which deform in a macro-
scopically ductile manner.

4.2. Compressive Strength

[29] Microscopic observation of laboratory rock and crys-
tal samples has shown that most cracks that form during
compressive tests are tensile and sub-parallel to the maxi-
mum compressive stress [Hallbauer et al., 1973; Moore
and Lockner, 1995]. Experimental tests also show that shear
fractures typically do not propagate in their own plane, and
the eventual failure of the sample must occur by linking up
of the tensile cracks to form a macro-shear fault [Horii and
Nemat-Nasser, 1985]. When we consider failure of the lat-
tice, the appearance of tensile cracks corresponds to the
breakage of horizontal bonds [Malan and Napier, 1995;
Hazzard et al., 2000], which also has an analytical solution.
4.2.1. Opening Mode of Micro-cracks
[30] As shown in Figure 5, bond 2 breaks in opening mode

when the relative displacement between particles 2 and 3
(Xn2) exceeds the breaking displacement (Xb). Let Copen

represents the absolute value of the vertical stress when the
bond breaks in opening mode. Substituting Xn2 =Xb into
equation (13a), Copen can be expressed as

Copen ¼ �syy ¼ 2
ffiffiffi
3

p
Kn Kn þ Ksð Þ
Kn � Ksð Þ �Xb

d
(22)

[31] Combining equations (18), (20), and (22) gives the
following equation between Copen and Tu:

Copen=Tu ¼ 0:75=v� 1ð Þ (23)

[32] The equation shows that the ratio of Copen to Tu is re-
lated to the Poisson’s ratio (v). When v = 0.25 (Ks = 0), the
first tensile crack appears when the magnitude of the vertical
stress exceeds two times of the tensile strength, and the tensile
crack does not occur in material with zero Poisson’s ratio (when
Ks = 1), since the material will not dilate laterally. The Poisson’s
ratio of rock is generally between 0.1 and 0.25. The
corresponding ratio of Copen/Tu is between 2 and 6.5.
4.2.2. Sliding Mode of Fracture Plane
[33] In Figure 5, when bond 2 of the unit breaks, the ten-

sile force between particles 2 and 3 will not exist. The failure
of bond 1 corresponds to the macroscopic shear fracture
plane of laboratory specimens. As shown in Figure 5, a ver-
tical compressive force Fy and a horizontal compressive
force Fx (negative) act on particles 1 and 2 (also on particle
3), respectively. The normal force (Fn1) and shear force
(FS1) of bond 1 can be expressed as (details in Appendix A)

Fn1 ¼
ffiffiffi
3

p
=4�Fyþ 1=2�Fx

FS1 ¼ 1=4�Fy� ffiffiffi
3

p
=2�Fx

�
(24)

[34] According to equation (5), bond 1 will break when
the magnitude of FS1 (negative) is equal to the maximum
shear force allowed by Coulomb friction. Substituting equa-
tion (24) to equation (5) gives the following expression be-
tween Fy and Fx:

Fy ¼ � 4

1� ffiffiffi
3

p
mp

�FS0 þ
2

ffiffiffi
3

p þ 2mp
1� ffiffiffi

3
p

mp
�Fx (25)

where mp and FS0 are inter-particle coefficient of friction and
shear resistant, respectively. The normal stresses along the x
direction (sxx) and y direction (syy) are determined by

sxx ¼ 2
ffiffiffi
3

p
=3� Fx=dð Þ

syy ¼ Fy=d

�
(26)

where d is particle diameter. Combined with equation (25),
the relationship between sxx and syy is

syy ¼ � 4

1� ffiffiffi
3

p
mp

�FS0

d
þ 3þ ffiffiffi

3
p

mp
1� ffiffiffi

3
p

mp
�sxx (27)

[35] The equation defines the failure envelope of the unit
in the stress-strain space, and the coefficient of sxx is the
slope of the failure envelope. Therefore, the inter-particle
coefficient of friction (mp) controls the slope of the Mohr-
Coulomb failure envelope of the lattice, which has been
demonstrated in previous numerical tests [Boutt and
McPherson, 2002]. According to the Coulomb criterion,
the stress state on the failure surface meets the following
condition [Pollard and Fletcher, 2005, p. 363]:

Figure 5. Bond 2 breaks when the relative displacement
(Xn2) between particles 2 and 3 exceeds the breaking dis-
placement (Xb). A vertical compressive force Fy and a hori-
zontal compressive force Fx (negative) act on the triangle
unit. The force states are used to derive the sliding mode
of the fracture plane (see section 4.2.2).
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syy ¼ �Cu þ 1þ m2i
� �1=2 þ mi
h i2

sxx (28)

where Cu is the uniaxial compressive strength; mi is the coef-
ficient of intrinsic friction. It is assumed that the Coulomb
criterion is valid throughout the lattice. Then, the first and
second terms of equation (27) are equal to those of equation
(28), and the Cu and mi can be defined by

Cu ¼ 4

1� ffiffiffi
3

p
mp

�FS0

d
(29)

mi ¼
P � 1

2
ffiffiffi
P

p ;P ¼ 3þ ffiffiffi
3

p
mp

1� ffiffiffi
3

p
mp

(30)

[36] Equation (29) indicates that inter-particle coefficient
of friction (mp) must be lower than

ffiffiffi
3

p
=3, as Cu is positive.

According to equation (30), the lowest mi of the close-
packed lattice is

ffiffiffi
3

p
=3 when mp is 0. Note that

ffiffiffi
3

p
=3 is the

cotangent of 60�, and the lowest mi represents the intrinsic
friction derived from the geometry of the equilateral triangle
unit. The mi of rock and crystal is generally lower than 2, and
the corresponding range of mp is from 0 to 0.455. The coef-
ficient of intrinsic friction of the model (mi) is much greater
than the inter-particle coefficient of friction (mp), due to the
rough surface (geometry) of close-packed lattice [Mora
and Place, 1994; Place and Mora, 1999]. A greater mp has
been used in an assemblage of random discrete particles
[Hazzard et al., 2000] (mp = 0.7), as the intrinsic friction of
the random assemblage derived from the geometry is smaller
than that of the close-packed lattice. However, in the simula-
tion of failure of particle aggregates, mp must be lower thanffiffiffi
3

p
=3. Otherwise, some particle aggregates in the random

assemblage may have a negative Cu according to equation
(29) and will not fail under compressive force.
[37] The shear strength of the lattice (S0) can be defined by

Cu and mi as [Pollard and Fletcher, 2005, p. 363]

S0 ¼ Cu

2 1þ m2ið Þ1=2 þ mi
h i

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ ffiffiffi

3
p

mp
� �� 1� ffiffiffi

3
p

mp
� �q �Fs0

d

(31)

[38] Therefore, both Cu and S0 increase with increasing in-
ter-particle shear resistant (Fs0) and coefficient of friction
(mp). Note that for a given material, FS0/d is a constant; thus,
Cu and S0 are not influenced by particle diameter (d).
[39] When the lattice fails in uniaxial compressive test, the

vertical strain (ec) is (details in Appendix A)

ec ¼ �
ffiffiffi
3

p
Kn þ 3Ksð Þ
3KnKs

� Fs0
d 1� ffiffiffi

3
p

mp
� � (32)

[40] In conclusion, the five mechanical properties of the
close-packed model, Young’s modulus (E), Poisson’s ratio
(v), tensile strength (Tu), compressive strength (Cu), and
coefficient of intrinsic friction (mi) can be defined by the five
inter-particle parameters, normal stiffness (Kn), shear stiff-
ness (Ks), breaking displacement (Xb), shear resistance
(Fs0), and coefficient of friction (mp). The conversion formu-
las between material properties and particle parameters are
provided in Appendices B and C.

5. Examples and Validations

5.1. Close-Packed Lattices of Quartz

[41] A MATLAB code “MatDEM” has been developed on
the basis of the model introduced in this paper. Numerical
models of quartz were used as an example to validate the
formulas and test the errors derived from particle number
(mesh density) and magnitude of strain. As Boutt and
McPherson [2002], we do not stipulate a single particle to
represent a single rock grain, but rather, the assemblage
represents a collection of spatially averaged grains. The
mechanical properties of the quartz and corresponding
inter-particle parameters are shown in Table 1. The particle
diameter (d) is 0.001m, and the particle mass (Mp) is
2.295� 10�3 kg according to the following equation [Hardy
and Finch, 2006]:

Mp ¼ r�
ffiffiffi
3

p
d2=2

� �
(33)

where r is the density of quartz, which is 2.650� 103 kg/m3.
[42] The particle parameters were used to define a series of

close-packed lattices, of which the aspect ratios (height/
width) were about 1. The particle numbers of the lattices
along the horizontal direction (N) are 2, 4, 8, 15, 30, 60,
and 120 (i.e., 0.2mm to 120mm in width), and
corresponding particle numbers are, respectively, 3 (single
unit), 18, 68, 247, 1033, 4106, and 16,611. In numerical
simulations, the lattices experienced tensile stress or com-
pressive stress to test the mechanical properties of the lat-
tices. As shown in Figure 1a, the lattice is bonded by two
smooth planes respectively on the top and bottom sides.
Only normal forces act on boundary particles, and there is
no friction between the particles and the two planes.

5.2. Tests of Elastic Properties

[43] The elastic properties of the lattice can be computed
via compressive tests. As shown in Figure 1a, 68 particles

Table 1. Quartz mechanical properties [Pollard and Fletcher, 2005, pp. 321, 343, and 361] and corresponding inter-particle parameters
(particle diameter is 0.001m)

Mechanical properties of quartz Inter-particle parameters of lattice

Young’s Modulus (E) 90GPa Normal stiffness (Kn) 65.87GN/m
Poisson’s ratio (v) 0.16 Shear stiffness (Ks) 23.71GN/m
Uniaxial tensile strength (Tu) 25MPa Breaking displacement (Xb) 1.901� 10�7m
Uniaxial compressive strength (Cu) 252MPa Shear resistance (Fs0) 36.90KN
Coefficient of intrinsic friction (mi) 1 Friction coefficient (mp) 0.2391
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are bonded to form a lattice that approximates a square
shape. In the numerical tests of elastic properties, top and
bottom planes are moved toward the center of the lattice step
by step at a speed of about 6� 10�10m/step (compressive
step). In response to the compressive force (Fy) between
them, the lattice is compressed and dilated laterally. The ver-
tical stress (syy) is calculated from Fy, and horizontal stress
(sxx) is zero. The vertical strain (eyy) and horizontal strain
(exx) are calculated on the basis of the displacement of the
particles. Then, the shear modulus (G) and the Lame’s constant
(l) are calculated from equation (14), with which the Young’s
modulus (E) and Poisson’s ratio (v) can be determined. The step
time of the simulations is 2� 10�8 s (time step). As the planes
are moved very slowly and step time is very small, the calcula-
tions are performed in a quasi-static manner.
[44] When the lattice is compressed, an artificial viscosity

(�) is used to avoid buildup of kinetic energy, which is deter-
mined by the following semi-empirical formula:

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8MpKn

p
=N (34)

where Mp is the particle mass, Kn is the inter-particle normal
stiffness, and N is the particle number of the square lattice
along the horizontal direction (N= 2, 4, 8, . . ., 120). Accord-
ing to a series of numerical tests, the kinematic energy of the
square lattice reduces at a high speed using the viscosity defined
by equation (34). After each compressive step, the simulation is
run for 400 time steps in order to damp reflectedwaves from the
two edges of the lattice. As a result, the kinematic energy is
almost zero when a new compressive step starts.
[45] A series of numerical tests was conducted to quantify

the errors of the lattice elastic properties. The E and v of the
lattices with different particle numbers and different vertical
strains are plotted, respectively, in Figures 6a and 6b. The
curves of three particles (black dashed lines) correspond to
the single triangle unit of Figure 2. As shown in Figure 6a,
when the vertical strain is very small, the tested E and v
are very close to the values of real quartz, 90 GPa and
0.16, respectively. The lattice with 18 particles has the
lowest precision: Young’s modulus is about 3% lower than
the theoretical value. When the particle number increases,

the elastic properties of the lattice converge to the theoret-
ical values.
[46] Under compressive stress, Young’s modulus

decreases and Poisson’s ratio increases with increasing mag-
nitude of the vertical strain. The elastic properties almost
maintain constant values when the magnitude of strain is
lower than 10�3. When the magnitude of strain exceeds
10�3, the Young’s modulus decreases and the Poisson’s
ratio increases significantly. Note that if a tensile stress is
applied to the lattice, the Young’s modulus will increase
and the Poisson’s ratio will decrease with increasing magni-
tude of vertical strain.
[47] In the model, it is assumed that the unit remains an

equilateral triangle shape when it is compressed. When the
vertical strains are very small, the simulated values are close
to the theoretical values (Figures 6a and 6b). However, when
the vertical strain is great, the unit cannot be regarded as an
equilateral triangle. As the unit dilates laterally, the calcu-
lated vertical stress and Young’s modulus will be lower.
When the vertical strain is �10�3, the simulated Young’s
modulus and Poisson’s ratio of one unit are, respectively,
0.034% lower and 0.084% greater than corresponding
theoretical values.

5.3. Tests of Strengths

[48] In the numerical simulations of compressive and tensile
strength tests, all particles of a lattice were originally bonded
to their neighbors and deformed elastically. Then, the lattices
were compressed step by step at a speed of 1.90� 10�9m/step
or extended at a speed of 1.90� 10�10 m/step, until the lat-
tices failed. The time step and viscosity used in the tests of
compressive strength and tensile strength are the same as
those of the elastic tests. The numerical simulations were
performed using a quadcore CPU workstation, which has
a peak performance of about 48 Gflops. For the largest
lattice with 16,611 particles, the simulation was run for
8� 104 compressive steps and a total of 3.2� 107 time
steps, which took 409 h CPU time.
[49] The stress path of a lattice with 1033 particles is

illustrated in Figure 7a. The vertical stress increases linearly
from the origin O until reaching point A, where tensile

Figure 6. Test results for Young’s modulus and Poisson’s ratio of one unit (three particles) agree with
the theoretical values, 90GPa and 0.16, respectively. Deviations of elastic properties of other lattices in-
crease with the increasing magnitude of strain and decrease with increasing particle number. (a) Young’s
modulus; (b) Poisson’s ratio.
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micro-cracks formed, and as a result, the stress declines a bit.
Then, the stress increases almost linearly, but the rate is
lower than that of OA. The whole lattice fails when the stress
reaches the uniaxial compressive strength (Cu) at point B.
Then the stress drops dramatically to almost zero at point
C. The lattice at point C is shown in Figure 7b. Two obvious
“X” shear zones appear in the failed lattice [Antonellini and
Pollard, 1995; Hardy et al., 2009], which are similar to the
conjugate shear fractures observed in some compressive
tests on rock [Borg and Handin, 1966; Wong et al., 2001].
The phenomenon of the numerical test coincides with that
of previous experimental tests using specimens of fine-
grained quartzite [Hallbauer et al., 1973]. In this experi-
ment, the first visible structural damage appears as elongated
opening micro-cracks having their axes oriented parallel to
the direction of maximum compressive stress. Then, the
number of micro-cracks increased drastically and finally link
up to form a macroscopic shear plane.
[50] The simulated Cu was calculated for a series of lat-

tices with particle numbers from 3 to 16,611, and the results
are plotted in Figure 8a. Similar to the compressive tests, the
tensile tests of the seven lattices were simulated and the
results are plotted in Figure 8b. As shown in the two figures,
the Cu and Tu of one unit (three particles) are, respectively,

0.98% and 0.03% lower than the theoretical values
(dashed lines). For one unit, the failure strain of the Cu test
(3.17� 10�3) is about 10 times greater than that of the Tu test
(2.71� 10�4). As indicated in Figure 6, the errors of the elastic
properties increase dramatically when the strain exceeds 10�3.
Therefore, the error of Cu is much greater than the error of Tu.
[51] The simulated compressive strength and tensile

strength are much smaller than theoretical values for other
lattices with multiple units. The average error of Cu for the
other six lattices (18–16611 particles) is about 22.2%, and
the error of Tu is about 4.3%. The greater errors are due to
“boundary effects” and stress concentrations. As shown in
Figure 7b, only one particle holds up the particle D on its
bottom side. When the lattice is compressed, the displacement
of particle D is greater in comparison with other neighboring
particles. As a result, the boundary particle will break earlier,
and stress will concentrate on nearby particles, which then
break. As shown in Figure 7a, the stress drops a bit at points
A2 andA3 prior to the point A, which indicates that some bound-
ary bonds break earlier. Furthermore, the amount of broken
bonds is much greater near the left and right sides of the lattice,
in particular, near the four corners (Figure 7b). Therefore, the
simulated Cu and Tu of lattices with multiple units are much
smaller than the theoretical values.

Figure 7. (a) Stress-strain graph of lattice with 1033 particles (30 particles along horizontal direction).
Opening micro-cracks appear when the compressive stress reaches Copen. The peak value of the curve
is the uniaxial compressive strength (Cu). (b) The lattice status at point C of the stress-strain graph. Note:
line segments between particles represent intact bonds.

Figure 8. (a) Simulated uniaxial compressive strength (Cu) and (b) tensile strength (Tu) with different
particle numbers. Dashed lines are corresponding theoretical values.
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6. Discussions and Conclusions

[52] Traditionally, the creation of discrete element model
with specified mechanical properties relies on calibration
processes to determine the correct inter-particle parameters.
In this paper, the rock was represented by bonded particles
to investigate the dependence of rock mechanical properties
on inter-particle parameters of the lattice model. Five para-
meters were used to define the inter-particle properties of
the lattice, including normal stiffness (Kn), shear stiffness
(Ks), breaking displacement (Xb), shear resistance (Fs0),
and coefficient of friction (mp). Based on the assumption of
small deformation, the conversion formulas between micro
inter-particle parameters and macro-material properties were
derived. With the application of the model and formulas, it is
easy to create material of lattice that has similar elastic prop-
erties and failure criteria to rock and crystal.
[53] Numerical models of quartz material were used to

validate the formulas and test the errors derived from particle
number and strain. The Young’s modulus and Poisson’s ra-
tio of one unit meet the theoretical values predicted by the
formulas. The errors of lattices with multiple units are
greater. However, when particle number increases, the errors
of the simulated values decrease and converge to
corresponding theoretical values. Since the formulas is on
the basis of the assumption of small deformation, the errors
of elastic properties increase with increasing magnitude of
strain. The errors increase significantly when the magnitude
of strain is greater than 10�3.
[54] In the numerical tests of uniaxial compressive

strength (Cu) and tensile strength (Tu), the measured
strengths are lower than theoretical values, due to the bound-
ary effects and stress concentrations. Furthermore, as the
breaking strain of uniaxial compressive test (3.17� 10�3)
is greater than 10�3, the error of uniaxial compressive
strength is much greater than that of tensile strength. An al-
ternative way to counteract the influence of the boundary
effects is to use a greater Cu and Tu in the conversion formu-
las (Appendix B). Such as the Tu of the block with 1033 par-
ticles is 3.3% lower than the theoretical Tu; thus, it should be
increased by 3.4% in the conversion formulas.
[55] The analytical solutions are applicable to a regular

close-packed lattice, which is more comparable to a pure
crystal, such as quartz. However, the disadvantage of the
crystalline lattice is anisotropy [Place and Mora, 1999],
and fractures tend to develop along 60� planes as shown in
Figure 7b. In Figures 2 and 5, the force acting on the triangle
unit is vertical, and the conversion formulas are validated
along the vertical direction (90�). As the unit is centrosym-
metric, the mechanical properties of the unit along the direc-
tions of 30� and 150� also follow the formulas. However, the
mechanical properties of the unit along the horizontal direc-
tion may be different. Although we do not have analytical
solutions of all the directions, some numerical tests indicate
that the Young’s modulus (E) and tensile strength (Tu) are a
bit lower along other directions. The anisotropic property of
the lattice can be an interesting further research topic.
[56] Random assemblies with polydisperse size distribu-

tions and random packing were usually used to counteract
the influence of anisotropic in many previous studies. Fortu-
nately, the random assemblies have been shown to have
some similar elastic and failure characteristics as lattice

models. For example, the solutions indicate that Poisson’s
ratio increases with increasing ratio of shear stiffness to nor-
mal stiffness (equation (C2)), the inter-particle coefficient of
friction (mp) controls the slope of the Mohr-Coulomb fail-
ure envelope of the lattice (equation (27)), and Cu increases
with increasing inter-particle shear resistant (Fs0) and
coefficient of friction (equation (C4)), which coincides
with previous numerical tests of random assemblies. The
solutions indicate how the macro-mechanical properties
of lattice are influenced by the micro inter-particle
parameters and consequently provide a theoretical basis
for the calibration of the parameters of random assemblies.
Such as, for a certain random assemblage, Kn and Ks can be
used to adjust the Young’s modulus and Poisson’s ratio of
the assemblage according to equations (C1) and (C2),
respectively.
[57] At microscopic scale, rocks are composed of irregu-

larly shaped grains, each of which can be represented by a
close-packed lattice. With the application of the model and
the conversion formulas introduced in this study, the grains
can simulate elastic properties and failure behaviors of rocks
and crystals. Then, the model can be used to simulate com-
plicated structures that involve deformation and failure at
different scales. Such as compaction bands (macroscopic)
in sandstone [Sternlof et al., 2005], which involve breakage
of quartz grains at microscopic scale.

Appendix A: Uniaxial Compressive Strain

[58] In Figure 5, bond 2 breaks when the magnitude of
compressive stress exceeds the limit of Copen. Then, the
balances of particle 1 along vertical direction and particle 2
along horizontal direction require that

�Fy ¼ � ffiffiffi
3

p �Fn1 � FS1

�1=2�Fn1 ¼ �Fx� ffiffiffi
3

p
=2�FS1

�
(A1)

[59] Equation (24) can be derived from equation (A1). The
physical equations and geometrical equations are

Fn1 ¼ Kn�Xn1

FS1 ¼ Ks�Xs1

�
(A2)

Xn1 ¼
ffiffiffi
3

p
=2�dyþ 1=4�Xn2

Xs1 ¼ 1=2�dy� ffiffiffi
3

p
=4�Xn2

�
(A3)

[60] With equations (A1) and (A2), the solution of vertical
displacement (dy) is

dy ¼ Kn þ 3Ksð Þ= 8KnKsð Þ�Fy (A4)

[61] According to equation (29), when bond 1 breaks, the
vertical compressive force (Fy) is

Fy ¼ �Cu�d ¼ � 4

1� ffiffiffi
3

p
md

�FS0 (A5)

[62] With equations (A4) and (A5), the corresponding
vertical strain is
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ec ¼ dy

lAO
¼ �

ffiffiffi
3

p
Kn þ 3Ksð Þ
3KnKs

� FS0

d 1� ffiffiffi
3

p
md

� � (A6)

Appendix B: Conversion Formulas of Material
Properties to Inter-particle Parameters

[63] Inter-particle normal stiffness (Kn), shear stiffness
(Ks), breaking displacement (Xb), shear resistance (Fs0), and
coefficient of friction (mp) can be defined by

Kn ¼ Effiffiffi
3

p
1� 2vð Þ� 1þ vð Þ (B1)

Ks ¼ E 1� 4vð Þffiffiffi
3

p
1� 2vð Þ� 1þ vð Þ (B2)

Xb ¼ 2Kn þ Ks

2
ffiffiffi
3

p
Kn Kn þ Ksð Þ �Tu�d (B3)

FS0 ¼ 1=4�
ffiffiffi
3

p
=4�mp

� �
�Cu�d (B4)

mp ¼
�3

ffiffiffi
3

p þ ffiffiffi
3

p
I

3þ 3I
; I ¼ 1þ m2i

� �1=2 þ mi
h i2

(B5)

Appendix C: Conversion Formulas of Inter-
particle Parameters to Material Properties

[64] Young’s modulus (E), Poisson’s ratio (v), tensile
strength (Tu), compressive strength (Cu), and coefficient of
intrinsic friction (mi) can be expressed as

E ¼
ffiffiffi
3

p
Kn þ Ksð Þ� 5Kn � Ksð Þ= 8Knð Þ (C1)

v ¼ 1=4� 1� Ks=Knð Þ (C2)

Tu

¼ u2
ffiffiffi
3

p
Kn Kn þ Ksð Þ

2Kn þ Ks
�Xb

d
(C3)

Cu ¼ 4

1� ffiffiffi
3

p
mp

�FS0

d
(C4)

mi ¼
P � 1

2
ffiffiffi
P

p ;P ¼ 3þ ffiffiffi
3

p
mp

1� ffiffiffi
3

p
mp

(C5)
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